Effect of Compression with Oscillatory Torsion Processing on Structure and Properties of Cu

2011 ◽  
Vol 674 ◽  
pp. 129-134 ◽  
Author(s):  
Kinga Rodak ◽  
Jacek Pawlicki ◽  
Krzysztof Radwański ◽  
Rafal M. Molak

In this study, commercial Cu was subjected to plastic deformation by compression with oscillatory torsion. Different deformation parameters were adopted to study their effects on the microstructure and mechanical properties of Cu. The deformed microstructure was characterized by using scanning electron microscopy (SEM) equipment with electron backscattered diffraction (EBSD) facility and scanning transmission electron microscopy (STEM). The mechanical properties were determined on an MTS QTest/10 machine equipped with digital image correlation. Can be found, that process performed at high compression rate and high torsion frequency is recommended for the refining grain size. The size of structure elements: average grain size (D) and subgrain size (d) reached 0.42 m and 0.30 m respectively, and the fraction of high angle boundaries was 35%, when the sample was deformed at a torsion frequency f= 1.6 Hz and compression rate v=0.04 mm/s. Deformation at these parameters leads to an improvement in strength properties. The strength properties are about two times greater than the initial state.

Crystals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 586 ◽  
Author(s):  
Shi ◽  
Li ◽  
Hu ◽  
Tan ◽  
Zhang ◽  
...  

A fine-grained Mg-2Y-0.6Nd-0.6Zr alloy was processed by bar-rolling and equal-channel angular pressing (ECAP). The effect of ECAP on the microstructure and mechanical properties of rolled Mg-2Y-0.6Nd-0.6Zr alloy was investigated by optical microscopy, scanning electron microscopy, electron backscattered diffraction and a room temperature tensile test. The results show that the Mg-2Y-0.6Nd-0.6Zr alloy obtained high strength and poor plasticity after rolling. As the number of ECAP passes increased, the grain size of the alloy gradually reduced and the texture of the basal plane gradually weakened. The ultimate tensile strength of the alloy first increased and then decreased, the yield strength gradually decreased, and the plasticity continuously increased. After four passes of ECAP, the average grain size decreased from 11.2 µm to 1.87 µm, and the alloy obtained excellent comprehensive mechanical properties. Its strength was slightly reduced compared to the as-rolled alloy, but the plasticity was greatly increased.


2015 ◽  
Vol 60 (4) ◽  
pp. 2977-2980
Author(s):  
B. Płonka ◽  
K. Remsak ◽  
P. Korczak ◽  
M. Lech-Grega ◽  
M. Rajda

The aim of the study was to test and assess products extruded from the magnesium alloys type MgAlZn: AZ31, AZ61 and AZ80A alloys in the form of Ø35mm round bars and 80x15mm flat bars. The test material was extruded in a direct system with the ram feed speed of 1 mm/s and the extrusion ratio λ = 7 ÷ 9. The extruded bars were examined in as-extruded state and after heat treatment to the T5 temper and T6 temper. The strength properties were tested and microstructure was examined with calculation of the average grain size.


2011 ◽  
Vol 176 ◽  
pp. 21-28 ◽  
Author(s):  
Kinga Rodak ◽  
Krzysztof Radwański ◽  
Rafal M. Molak

. In this study, commercial Al was subjected to plastic deformation by multi-axial compression. The microstructure and mechanical properties in dependence on effective strain were studied. Aluminum was processed to effective strain f = 9.6. The misorientation distribution and subgrain/grain size were analyzed by using a scanning electron microscopy (SEM) equipment with electron back scattered diffraction (EBSD) facility. The dislocation microstructure was investigated by a scanning transmission electron microscope (STEM). The mechanical properties as: yield strength (YS), ultimate tensile strength (UTS), uniform and total elongation were performed on MTS QTest/10 machine equipped with digital image correlation method (DIC). Deformation of Al by the multi-axial compression leads to grain refinement to ultra-fine grains (UFGs) and improvement in strength properties. Material exhibits the following strength parameters: UTS: 129 MPa, YS: 124 MPa after deformation at f = 9.6. These values are about two times higher compared with initial state.


2015 ◽  
Vol 816 ◽  
pp. 404-410 ◽  
Author(s):  
Geng Hua Cao ◽  
Da Tong Zhang

Mg-2.5wt%Y-4wt%Nd-0.5wt%Zr casting alloy was subjected to submerged friction stir processing (SFSP) with different rotation rates (ω) and travel speeds (υ). The influence of the ratio of ω/υ on the microstructure and mechanical properties of Mg-Y-Nd alloy was investigated in the present work by optical microscopy, scanning electron microscopy, transmission electron microscopy, tensile test and hardness measurement. The results showed that the average grain sizes of SFSP samples were significantly refined compared with as-cast sample, and the coarse net-shaped Mg12Nd phases which located at grain boundaries in as-cast sample were changed into small particles. The combined effect of grain refinement and uniform particles distribution was responsible for the enhancement of mechanical properties. The relative optimal parameter of 600 rpm/60 mm·min-1in this research obtained the finest grain size and the best mechanical properties, which were 1.1 μm for average grain size, 305 MPa for ultimate tensile strength and 22% for elongation, respectively.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Nan Ye ◽  
Xueping Ren

The Al-Nb/Ti/Ni composite was fabricated from pure Al, Ni, Ti, and Nb sheets by the ARB technology. The microstructure evolution was observed by scanning electron microscopy, x-ray diffraction, and transmission electron microscopy. The evolution was evaluated by the electron backscattered diffraction (EBSD) technique. A couple of results we obtained showed that the microstructure of Al changed from equiaxed grains to a lamellar structure, and the grain size in the ND decreased gradually. Finally, the average grain size in the ND was 0.31 μm. Additionally, the fraction of HAGBs increased after the third pass, resulting from the dynamic recovery and the shear bands. The texture evolution was tested by electron backscattered diffraction. After the fourth pass, the Al exhibited a combination texture of rolling texture and shear texture. The rolling texture components were composed of Copper{112}<111>, Dillamore{4 4 11}<11 11 8>, S{123}<634>, and Brass{011}<211>, and the shear texture components were Rotated Cube {001}<110> and {111}//ND. The microhardness of Ni, Ti, Nb, and Al was improved in the ARB process and finally reached 226.4, 246.3, 187.2, and 44.2 HV, respectively.


2010 ◽  
Vol 667-669 ◽  
pp. 1033-1038 ◽  
Author(s):  
Mahmood Fatemi Varzaneh ◽  
Jose María Cabrera ◽  
Abbas Zarei Hanzaki

A new continuous severe plastic deformation (SPD) method called accumulative back extrusion (ABE) was employed to fabricate ultra-fine grained AZ31 Mg alloy. Microstructures of AZ31 alloy processed by ABE up to four passes at a temperature of 230 °C were investigated using field emission scanning electron microscopy (FESEM). The results showed that the initial average grain size of 25 µm was reduced to about 1 µm. It was also found out that the more passes gave more homogenous microstructure. In addition, in order to find the effect of grain size on the mechanical properties, micro-tension tests were carried out and the changes in the yield and tensile strength and fracture elongation were analyzed. The obtained tensile properties were discussed relying on the characteristics of as-processed microstructures.


2013 ◽  
Vol 58 (1) ◽  
pp. 95-98 ◽  
Author(s):  
M. Zielinska ◽  
J. Sieniawski

Superalloy René 77 is very wide used for turbine blades, turbine disks of aircraft engines which work up to 1050°C. These elements are generally produced by the investment casting method. Turbine blades produced by conventional precision casting methods have coarse and inhomogeneous grain structure. Such a material often does not fulfil basic requirements, which concern mechanical properties for the stuff used in aeronautical engineering. The incorporation of controlled grain size improved mechanical properties. This control of grain size in the casting operation was accomplished by the control of processing parameters such as casting temperature, mould preheating temperature, and the use of grain nucleates in the face of the mould. For nickel and cobalt based superalloys, it was found that cobalt aluminate (CoAl2O4) has the best nucleating effect. The objective of this work was to determine the influence of the inoculant’s content (cobalt aluminate) in the surface layer of the ceramic mould on the microstructure and mechanical properties at high temperature of nickel based superalloy René 77. For this purpose, the ceramic moulds were made with different concentration of cobalt aluminate in the primary slurry was from 0 to 10% mass. in zirconium flour. Stepped and cylindrical samples were casted for microstructure and mechanical examinations. The average grain size of the matrix ( phase), was determined on the stepped samples. The influence of surface modification on the grain size of up to section thickness was considered. The microstructure investigations with the use of light microscopy and scanning electron microscopy (SEM) enable to examine the influence of the surface modification on the morphology of ’ phase and carbides precipitations. Verification of the influence of CoAl2O4 on the mechanical properties of castings were investigated on the basis of results obtained form creep tests.


2021 ◽  
Vol 104 (2) ◽  
pp. 003685042110294
Author(s):  
Khaled Abd El-Aziz ◽  
Emad M Ahmed ◽  
Abdulaziz H Alghtani ◽  
Bassem F Felemban ◽  
Hafiz T Ali ◽  
...  

Aluminum alloys are the most essential part of all shaped castings manufactured, mainly in the automotive, food industry, and structural applications. There is little consensus as to the precise relationship between grain size after grain refinement and corrosion resistance; conflicting conclusions have been published showing that reduced grain size can decrease or increase corrosion resistance. The effect of Al–5Ti–1B grain refiner (GR alloy) with different percentages on the mechanical properties and corrosion behavior of Aluminum-magnesium-silicon alloy (Al–Mg–Si) was studied. The average grain size is determined according to the E112ASTM standard. The compressive test specimens were made as per ASTM: E8/E8M-16 standard to get their compressive properties. The bulk hardness using Vickers hardness testing machine at a load of 50 g. Electrochemical corrosion tests were carried out in 3.5 % NaCl solution using Autolab Potentiostat/Galvanostat (PGSTAT 30).The grain size of the Al–Mg–Si alloy was reduced from 82 to 46 µm by the addition of GR alloy. The morphology of α-Al dendrites changes from coarse dendritic structure to fine equiaxed grains due to the addition of GR alloy and segregation of Ti, which controls the growth of primary α-Al. In addition, the mechanical properties of the Al–Mg–Si alloy were improved by GR alloy addition. GR alloy addition to Al–Mg–Si alloy produced fine-grained structure and better hardness and compressive strength. The addition of GR alloy did not reveal any marked improvements in the corrosion properties of Al–Mg–Si alloy.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 645
Author(s):  
Igor Litovchenko ◽  
Sergey Akkuzin ◽  
Nadezhda Polekhina ◽  
Kseniya Almaeva ◽  
Evgeny Moskvichev

The effect of high-temperature thermomechanical treatment on the structural transformations and mechanical properties of metastable austenitic steel of the AISI 321 type is investigated. The features of the grain and defect microstructure of steel were studied by scanning electron microscopy with electron back-scatter diffraction (SEM EBSD) and transmission electron microscopy (TEM). It is shown that in the initial state after solution treatment the average grain size is 18 μm. A high (≈50%) fraction of twin boundaries (annealing twins) was found. In the course of hot (with heating up to 1100 °C) plastic deformation by rolling to moderate strain (e = 1.6, where e is true strain) the grain structure undergoes fragmentation, which gives rise to grain refining (the average grain size is 8 μm). Partial recovery and recrystallization also occur. The fraction of low-angle misorientation boundaries increases up to ≈46%, and that of twin boundaries decreases to ≈25%, compared to the initial state. The yield strength after this treatment reaches up to 477 MPa with elongation-to-failure of 26%. The combination of plastic deformation with heating up to 1100 °C (e = 0.8) and subsequent deformation with heating up to 600 °C (e = 0.7) reduces the average grain size to 1.4 μm and forms submicrocrystalline fragments. The fraction of low-angle misorientation boundaries is ≈60%, and that of twin boundaries is ≈3%. The structural states formed after this treatment provide an increase in the strength properties of steel (yield strength reaches up to 677 MPa) with ductility values of 12%. The mechanisms of plastic deformation and strengthening of metastable austenitic steel under the above high-temperature thermomechanical treatments are discussed.


2020 ◽  
Vol 17 (6) ◽  
pp. 831-836
Author(s):  
M. Vykunta Rao ◽  
Srinivasa Rao P. ◽  
B. Surendra Babu

Purpose Vibratory weld conditioning parameters have a great influence on the improvement of mechanical properties of weld connections. The purpose of this paper is to understand the influence of vibratory weld conditioning on the mechanical and microstructural characterization of aluminum 5052 alloy weldments. An attempt is made to understand the effect of the vibratory tungsten inert gas (TIG) welding process parameters on the hardness, ultimate tensile strength and microstructure of Al 5052-H32 alloy weldments. Design/methodology/approach Aluminum 5052 H32 specimens are welded at different combinations of vibromotor voltage inputs and time of vibrations. Voltage input is varied from 50 to 230 V at an interval of 10 V. At each voltage input to the vibromotor, there are three levels of time of vibration, i.e. 80, 90 and 100 s. The vibratory TIG-welded specimens are tested for their mechanical and microstructural properties. Findings The results indicate that the mechanical properties of aluminum alloy weld connections improved by increasing voltage input up to 160 V. Also, it has been observed that by increasing vibromotor voltage input beyond 160 V, mechanical properties were reduced significantly. It is also found that vibration time has less influence on the mechanical properties of weld connections. Improvement in hardness and ultimate tensile strength of vibratory welded joints is 16 and 14%, respectively, when compared without vibration, i.e. normal weld conditions. Average grain size is measured as per ASTM E 112–96. Average grain size is in the case of 0, 120, 160 and 230 is 20.709, 17.99, 16.57 and 20.8086 µm, respectively. Originality/value Novel vibratory TIG welded joints are prepared. Mechanical and micro-structural properties are tested.


Sign in / Sign up

Export Citation Format

Share Document