Effect of Load Direction on Tensile Yield Properties in Mg-3Al-Zn Alloy

2011 ◽  
Vol 682 ◽  
pp. 145-151 ◽  
Author(s):  
Ran Liu ◽  
De Liang Yin ◽  
Jing Tao Wang

Deformation anisotropy of samples from rolled sheet and extruded rod of AZ31 alloy was investigated in the present work. A strong basal plane texture is detected formed during rolling and extrusion, and both rolled and extruded samples exhibit similar mechanical behavior: tensile yield strength is the highest in the specimens parallel to the longitudinal direction, and decrease continuously as the specimen orientation departs from the longitudinal direction. Using texture analysis and optical microscopy it has been found that, the obvious anisotropy can be explained by texture and orientation factor during tension and compression. Basal slip and twinning are restricted when tensile load is applied in the rolling and extrusion direction, which results in high tensile yield strength along the two directions.

2012 ◽  
Vol 2012 ◽  
pp. 1-9 ◽  
Author(s):  
Muralidharan Paramsothy ◽  
Jimmy Chan ◽  
Richard Kwok ◽  
Manoj Gupta

A hybrid magnesium alloy nanocomposite containing TiC nanoparticle reinforcement was fabricated using solidification processing followed by hot extrusion. The nanocomposite exhibited similar grain size to the monolithic hybrid alloy, reasonable TiC nanoparticle distribution, nondominant (0 0 0 2) texture in the longitudinal direction, and 16% higher hardness than the monolithic hybrid alloy. Compared to the monolithic hybrid alloy, the nanocomposite simultaneously exhibited higher tensile yield strength (0.2% TYS), ultimate tensile strength (UTS), failure strain, and work of fracture (WOF) (+14%, +7%, +81%, and +92%, resp.). Compared to the monolithic hybrid alloy, the nanocomposite exhibited lower compressive yield strength (0.2% CYS) and higher ultimate compressive strength (UCS), failure strain, and WOF (–11%, +7%, +4%, and +15%, resp.). The advantageous effects of TiC nanoparticle addition on the enhancement of tensile and compressive properties of the hybrid magnesium alloy are investigated in this paper.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Muralidharan Paramsothy ◽  
Jimmy Chan ◽  
Richard Kwok ◽  
Manoj Gupta

A hybrid magnesium alloy nanocomposite containing AlN nanoparticle reinforcement was fabricated using solidification processing followed by hot extrusion. The nanocomposite exhibited similar grain size to the monolithic hybrid alloy, reasonable AlN and intermetallic nanoparticle distribution, nondominant(0 0 0 2)texture in the longitudinal direction, and 17% higher hardness than the monolithic hybrid alloy. Compared to the monolithic hybrid alloy, the nanocomposite exhibited higher tensile yield strength (0.2% TYS) and ultimate tensile strength (UTS) without significant compromise in failure strain and energy absorbed until fracture (EA) (+5%, +5%, −14% and −10%, resp.). Compared to the monolithic hybrid alloy, the nanocomposite exhibited unchanged compressive yield strength (0.2% CYS) and higher ultimate compressive strength (UCS), failure strain, and EA (+1%, +6%, +24%, and +6%, resp.). The overall effects of AlN nanoparticle addition on the tensile and compressive properties of the hybrid magnesium alloy is investigated in this paper.


Metals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1265
Author(s):  
Tianhui Lu ◽  
Mingyang Zhou ◽  
Lingbao Ren ◽  
Lingling Fan ◽  
Yangyang Guo ◽  
...  

Graphene, as a rising-star materials, has attracted interest in fabricating lightweight self-lubricating metal matrix composites with superior mechanical and wear properties. In this work, graphene nanoplatelets (GNPs) reinforced AZ31 alloy composites were fabricated by a powder metallurgy technique and then a hot extrusion. The effects of GNPs content (0.5, 1.0, and 2.0 wt.%) on the microstructures, mechanical properties, and wear performance of the extruded GNPs/AZ31 composites were studied. It was found that the addition of GNPs resulted in a weakened basal plane texture and grain refinement of the AZ31 matrix metal. Less than 1.0 wt.% GNPs in GNPs/AZ31 composites resulted in the enhancement in both Vickers hardness and tensile yield strength with acceptable elongation. The Vickers hardness and tensile yield strength of 1.0GNPs/AZ31 composite increased by 4.9% and 9.5% respectively, compared with the unreinforced AZ31. Moreover, the elongation of the composites was about the same as the AZ31 base alloy. Both the friction coefficient and the wear mass loss continuously decreased with the increasing GNPs content, which exhibited a self-lubricating effect. The relationship of the friction coefficient and wear mass loss with the GNPs content could be modeled in terms of the Holliday model and the exponential decay model, respectively. The worn surface morphology revealed that adhesive wear and abrasive wear simultaneously acted in AZ31 alloy. Nevertheless, abrasive wear became the dominant wear mechanism in the GNPs/AZ31 composites.


Alloy Digest ◽  
2003 ◽  
Vol 52 (8) ◽  

Abstract Bethlehem Lukens Plate (BLP) offers five grades of Spartan high-strength steels with tensile yield strength over 690 MPa (100 ksi). These alloys contain copper for precipitation reactions. They also have improved weldability and toughness compared to ASTM A 514 and A 543 grades. This datasheet provides information on composition, microstructure, hardness, and tensile properties as well as fracture toughness. It also includes information on forming and joining. Filing Code: SA-518. Producer or source: Bethlehem Lukens Plate.


2008 ◽  
Vol 6 (4) ◽  
pp. 535-541 ◽  
Author(s):  
Oliver Staller ◽  
Christina Mitterbauer ◽  
Katharina Mayr

AbstractIn this paper we report a method to determine tensile strengths and Young’s modulus of cubic biaxial textured metal tapes used as substrate materials for coated conductors (CC). Simplicity, rapidity and reproducibility of the procedure are important for the evaluation of continuous in-house productions. Our approach is based on the EN 10002-1 B tensile test method. A key role for satisfactory results is the sample preparation of 100–250 μm thick tapes, which will be described in detail. Copper (E-Cu57) can be successfully transformed to cubic biaxial textured substrates. Best results were achieved by annealing between 750°C and 850°C in reducing atmosphere. Best FWHM values for the ψ scan are 5.51° and for the ϕ scan are 4.5°. Pole figure analysis verified the sharp {001} texture of the tape. Vickers hardness measurements (HV 0.1) for the cold worked material yielded values of 135 and for the annealed tape, values of 37. The ultimate tensile yield strength Rm of the textured substrate is 150 MPa and thus significantly lower than that for the cold worked material (413 MPa). Cubic biaxial substrates could be manufactured from Isotan CuNi44 (WM49) bars. Best results were achieved by annealing at 1200°C in reducing atmosphere. Pole figure analysis verified the {001} texture with other low intensity texture components. Vickers hardness measurements (HV 0.1) for the cold worked material yielded values of 236 and for the annealed tape values of 92. The ultimate tensile yield strength R m of the textured substrate is 300 MPa and thus significantly lower than that for the cold worked material (723 MPa).


2012 ◽  
Vol 706-709 ◽  
pp. 1237-1242 ◽  
Author(s):  
Masafumi Noda ◽  
Yoshihito Kawamura

Mg alloys are lightweight structural alloys that normally have a good castability and machinability as well as an excellent specific strength and rigidity. However, the mechanical properties of Mg alloys are inferior to those of Al alloys, and their range of industrial applications is limited. Recently, Mg–Zn–Y alloy has been found to show a high tensile yield strength with a good elongation. The alloy has a long-period stacking order (LPSO) phase as the secondary phase in an α-Mg phase. In general, the tensile yield strengths of LPSO-type Mg alloy are known to be markedly enhanced by the formation of kink bands in the LPSO phase and by microstructural refinement of the α-Mg phase during plastic deformation. The separate roles of the LPSO phase and the α-Mg phase in relation to the mechanical properties of high-strength LPSO-type Mg alloy were investigated at ambient and high temperatures. For high strengths at ambient and high temperatures, it was important that the α-Mg phase consisted of a fine-grain region and a nonrecrystallized region, and that the LPSO phase remained as a block-type phase. On the other hands, it was necessary to change the LPSO phase from a block-type phase into a plate-type phase by heat treatment before tensile testing to improve the ductility of the alloy while maintaining its tensile yield strength. Microstructural control of the LPSO phase and the α-Mg phase is necessary to obtained Mg–Zn–Y alloy with superior mechanical properties at ambient-to-high temperatures.


2011 ◽  
Vol 682 ◽  
pp. 211-216
Author(s):  
Rong Zhu ◽  
Jin Qiang Liu ◽  
Jing Tao Wang ◽  
Ping Huang ◽  
Yan Jun Wu ◽  
...  

Equal channel angular pressing (ECAP) has been used to refine the grain size of Mg-12Gd-3Y-0.5Zr billet at about 400°C because it lacks sufficient ductility at low temperatures. However, <0001> peak intensity is oriented about 50º from the extrusion direction, which facilitates the basal slip, and decreases the yield strength. We have employed conventional extrusion at 300°C following ECAP to modify the texture in hard orientation. This two-step process makes use of two strengthening mechanisms a) grain boundary strengthening due to small grain size, and (b) texture strengthening due to grains in hard orientation. The samples processed by the two-step show the yield and ultimate strength to 283 and 308 MPa, respectively. Moreover, the activation of <c+a> slip and fine grains resulted from the ECAP helped to maintain a good ductility even after significant straining from conventional extrusion.


2021 ◽  
Vol 4 ◽  
pp. 42-49
Author(s):  
G. P. Kobylyansky ◽  
◽  
А. О. Mazaev ◽  
Е. А. Zvir ◽  
S. G. Eremin ◽  
...  

Presented are the results of mechanical tensile tests of longitudinal (segmental) samples cut from the midsection of claddings spent as VVER-1000 FA during one- and six-year campaigns and subject to thermal tests in helium at 480 °С during 468 full days. An average burnup of these fuel rods achieved ~ 20 and ~ 70 (MW·day)/kg U, respectively. The tests followed the examinations for cladding mechanical properties performed using the tests results for ring samples cut from the specified fuel rods. These fuel rods were tested in the experiments to determine impact of long-term thermal tests that model dry storage conditions on mechanical properties of Zr E110 claddings. Based on mechanical tests results at room temperature and at 380 °С there was determined as follows: ultimate strength sв, yield strength s0,2 and total relative elongation d0 of claddings length-wise on the fuel rod segments at the fuel column midsection. The obtained characteristics were compared to corresponding values for initial (unirradiated) cladding tubes and mechanical test results of the ring samples in the transverse direction. Long-term thermal tests have led to partial return to initial (before operation) values sв, s0,2 and d0 of radiation-hardened claddings; this return was more prominent in the longitudinal direction than in the transverse one. A radiation hardening decrease was accompanied with an increase in total relative elongation values in both cladding directions. Anisotropy of yield strength has changed as well. These changes can be explained by partial annealing of radiation defects, which are obstacles to dislocation movements during cladding strain. The morphology of above radiation defects is different in various sliding planes in texturized grains of cladding material.


Author(s):  
Aleksandr B. VOROZHTSOV ◽  
◽  
Vladimir V. PLATOV ◽  
Aleksandr A. KOZULIN ◽  
Anton P. KHRUSTALEV ◽  
...  

In this work, the special master alloys containing aluminum and TiB2 powder with bimodal particle size distribution in three mixture compositions are prepared. The master alloys are infused into the melts using an external ultrasound source. The castings with particles had smaller grain sizes than the initial castings without particles. It is found that the hardness, yield strength, and ultimate tensile strength reach higher values with an increase in the relative elongation of the cast alloys with added particles. A warm rolling mode is employed for the studied alloys to obtain sheet blanks. It is shown that the staged shrinkage of the billets up to deformation of 80 % with periodic heating up to 300 °C allows one to obtain defect-free sheet products. The structure of the rolled sheet-alloys is characterized by the plate-shaped grains elongated along the rolling direction with pockets of submicron-sized grains in between. The strength properties of the studied rolled alloys exceeded those of the cast alloys. In the case of the rolled alloys, an increase in the yield strength, ultimate tensile strength, and ductility is revealed for the alloys with particles as compared to the ones with no particles added.


Sign in / Sign up

Export Citation Format

Share Document