scholarly journals STUDY OF THE EFFECT OF TiB2 PARTICLES ON THE STRUCTURE, DEFORMATION BEHAVIOR, AND PROPERTIES OF THE ALUMINUM ALLOY 1550

Author(s):  
Aleksandr B. VOROZHTSOV ◽  
◽  
Vladimir V. PLATOV ◽  
Aleksandr A. KOZULIN ◽  
Anton P. KHRUSTALEV ◽  
...  

In this work, the special master alloys containing aluminum and TiB2 powder with bimodal particle size distribution in three mixture compositions are prepared. The master alloys are infused into the melts using an external ultrasound source. The castings with particles had smaller grain sizes than the initial castings without particles. It is found that the hardness, yield strength, and ultimate tensile strength reach higher values with an increase in the relative elongation of the cast alloys with added particles. A warm rolling mode is employed for the studied alloys to obtain sheet blanks. It is shown that the staged shrinkage of the billets up to deformation of 80 % with periodic heating up to 300 °C allows one to obtain defect-free sheet products. The structure of the rolled sheet-alloys is characterized by the plate-shaped grains elongated along the rolling direction with pockets of submicron-sized grains in between. The strength properties of the studied rolled alloys exceeded those of the cast alloys. In the case of the rolled alloys, an increase in the yield strength, ultimate tensile strength, and ductility is revealed for the alloys with particles as compared to the ones with no particles added.

2012 ◽  
Vol 710 ◽  
pp. 539-544 ◽  
Author(s):  
P. Ramesh Narayanan ◽  
Satyam Suwas ◽  
K. Sreekumar ◽  
Parameshwar Prasad Sinha ◽  
Srinivasa Ranganathan

This paper covers the influence of crystallographic texture on the mechanical properties in two of the most important high strength Al-Zn-Mg family of aluminium alloys, viz., AA7075 and AFNOR7020 alloys, used in the Aerospace industry. AFNOR7020 Alloy developed a stronger texture compared to the other two alloys. S component of texture is stronger in AA7075 alloy whereas the Bs component is stronger in AFNOR7020 alloy. This is attributed to the shear banding which was found absent in the other alloy. The starting material, AA7075 in T7352 condition and AFNOR7020 in T652 condition show some degree of anisotropy of mechanical properties with regard to yield strength and ultimate tensile strength. Higher degree of deformation leads to more pronounced anisotropy in mechanical properties with regard to yield strength and ultimate tensile strength, with a maxima along the transverse direction. For the alloys, experimentally measured Plastic Strain Ratio, r value, which is a measure of the texture present in the material in the deformation conditions, agree well with the computed values with a maximum at 45oorientation to the rolling direction.


2019 ◽  
Vol 34 (01n03) ◽  
pp. 2040035
Author(s):  
Xiang Cai ◽  
Yanxin Qiao ◽  
Baojie Wang ◽  
Huiling Zhou ◽  
Yuxin Wang

The influence of rolling on nanomechanical and mechanical behavior of Mg-7Li alloy was investigated by nanoindentation, tensile test and scanning electron microscopy (SEM), respectively. The [Formula: see text]-Mg phase elongated along the rolling direction and gradually cracked. As the rolling ratio increased from 3 to 10, the hardness of [Formula: see text]-Mg and [Formula: see text]-Li phase increased by 7.35% and 20.75%, respectively. The fracture of alloys changed from ductile fracture to quasi-cleavage fracture. The yield strength and ultimate tensile strength increased by 23 MPa and 12 MPa, respectively, while elongation reduced by 12.5%.


Author(s):  
Ramakrishna Koganti ◽  
Sergio Angotti ◽  
Ron Cooper ◽  
Dan Houston ◽  
Asif Waheed ◽  
...  

Use of Advanced High Strength Steels in automotive applications is increasing. One of these materials is boron steel, which is commercially available in coated and uncoated sheets. Automotive manufacturers are using boron steel in body structure applications to produce light weight parts and to address safety requirements. Boron steel is available in a non heat-treated condition (also referred to as “green state”) which typically has a yield strength around 350 MPa. The yield strength for a fully temperature hardened boron steel increases to above 1000 MPa, depending on heat treatment temperature and quenching methods used. In this report, the static and fatigue properties of uncoated boron steel were evaluated. One objective was to understand whether these properties varied with respect to the material rolling direction (longitudinal, transverse and diagonal). For static strength analysis three different gages (1.0 mm, 1.5 mm and 2.0 mm) were evaluated. For fatigue evaluation, 3.0 mm thickness boron steel was evaluated. Based on the mechanical test data, ultimate tensile strength was not statistically significant in all three directions (longitudinal, transverse and diagonal) among three gages chosen. However, within the same gage, ultimate tensile strength is statistically significant in all three directions. 0.2% offset Yield strength and total elongation are uniform in all gages as well as in all three directions within each gage. However, uniform elongation (at max. load condition) was significant among the gages as well as within the same gages. A comparison of the monotonic and cyclic stress strain curves indicates boron steel is a strain-softening material.


Metals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 31
Author(s):  
Hongxin Liao ◽  
Taekyung Lee ◽  
Jiangfeng Song ◽  
Jonghyun Kim ◽  
Fusheng Pan

The microstructures and mechanical properties of the Mg88.5Zn5Y6.5-XREX (RE = Yb and Ce, X = 0, 1.5, 3.0, and 4.5) (wt.%) alloys were investigated in the present study. Mg88.5Zn5Y6.5 is composed of three phases, namely, α-Mg, long-period stacking ordered (LPSO) phases, and intermetallic compounds. The content of the LPSO phases decreased with the addition of Ce and Yb, and no LPSO phases were detected in Mg88.5Zn5Y2.0Yb4.5. The alloys containing the LPSO phases possessed a stratified microstructure and exhibited excellent mechanical properties. Mg88.5Zn5Y5.0Ce1.5 exhibited the highest creep resistance and mechanical strength at both room temperature and 200 °C, owing to its suitable microstructure and high thermal stability. The yield strength of Mg88.5Zn5Y5.0Ce1.5 at room temperature was 358 MPa. The ultimate tensile strength of Mg88.5Zn5Y5.0Ce1.5 at room temperature and 200 °C was 453 MPa and 360 MPa, respectively.


2016 ◽  
Vol 16 (1) ◽  
Author(s):  
Ayu Rizeki Ridhowati ◽  
Eka Febriyanti ◽  
Rini Riastuti

Warm rolling is one of the thermomechanical method has several advantages such as produces high mechanical properties, but does not decrease % elongation and toughness value because partial recrystallization phenomenon that produces micron-sized new grain. This paper reports the results of an investigation carried out on the effects of holding time annealing to mechanical properties Cu-Zn 70/30 alloy. These alloy after homogenization process and quenched in the air then heated to temperature of 300°C, later the heated copper samples are warm rolled at 25%, 30%, and 35% reduction, after that heated at temperature 300°C and held during 120 minutes. Then sample is experienced rewarm rolling with reduction 25%, 30%, and 35%. The results obtained showed that the ultimate tensile strength and yield strength are higher proportional with the increasing of % reduction, their values are 501,1 MPa; 599,3 MPa; later decrease to 546, 5 MPa and to yield strength are 441,8 MPa; 466,1 MPa; then decrease to 458,6 MPa. Moreover hardness value increase proportional with % reduction such as 154 HV; 162 HV; after that decrease to 160 HV While, % elongation decreases inversely proportional with % reduction namely 12,4%; 8,2%; later increase to 11,2 %. It is caused of the partial recrystallization phenomenon as evidenced by the presence micron-sized.AbstrakWarm rolling merupakan salah satu metode termomekanik yang mempunyai beberapa keuntungan yaitu salah satunya menghasilkan sifat mekanik yang tinggi, namun tidak mengurunkan nilai keuletan karena adanya fenomena rekristalisasi parsial yang menghasilkan butiran baru berbentuk micron. Paper ini menjelaskan tentang hasil penelitian berupa pengaruh persentase reduksi terhadap sifat mekanis paduan Cu-Zn 70/30. Paduan Cu-Zn 70/30 setelah dilakukan proses homogenisasi dan didinginkan di udara lalu dipanaskan ke suhu 300°C, kemudian masing-masing dilakukan warm rolling dengan persentase reduksi sebesar 25%, 30%, dan 35% kemudian ditahan di suhu 300°C dalam waktu 120 menit. Selanjutnya sampel dilakukan rewarm rolling dengan persentase reduksi sebesar 25%, 30%, dan 35%. Hasil penelitian yang dilakukan antara lain nilai kekuatan tarik (UTS dan YS) yang semakin tinggi sebanding dengan peningkatan % reduksi warm rolling yaitu masing-masing untuk nilai UTS sebesar 501,1 MPa; 599,3 MPa; lalu menurun menjadi 546,5 MPa serta untuk nilai kekuatan luluh sebesar 441,8 MPa; 466,1 MPa; lalu menurun menjadi 458,6 MPa. Selain itu, nilai kekerasan meningkat sebanding dengan peningkatan % reduksi warm rolling masing-masing sebesar 154 HV; 162 HV; lalu menurun menjadi 160 HV. Sedangkan persentase elongasi semakin menurun berbanding terbalik dengan peningkatan % reduksi masing-masing sebesar 12,4%; 8,2%; lalu meningkat menjadi 11,2%. Hal tersebut disebabkan karena adanya fenomena rekristalisasi parsial yang dibuktikan dengan kehadiran butir kecil berukuran mikron.Keywords : Cu-Zn 70/30 alloy, warm rolling, anneal, % reduction, mechanical properties


2019 ◽  
Vol 22 (2) ◽  
pp. 143-150
Author(s):  
Hussain J. M. Al-Alkawi ◽  
Abduljabbar Owaid Hanfesh ◽  
Saja Mohammed Noori Mohammed Rauof

This research is devoted to study the influence of different weight percent concerning to the additions of Ti and Cu on mechanical and tribological properties of AA6061. The composite materials consist of different weight percentage of Ti (0.2, 0.4, and 0.6) wt% and constant weight percentage of Cu (0.2) wt% which were fabricated by liquid metallurgy route technique. Microstructural characterization and phases have been examined by using SEM (scanning electron microscopic).SEM examination showed uniform distribution of nano Ti and Cu in AA6061. The consequences of mechanical tests demonstrated clear enhancement in mechanical properties, such as ultimate tensile strength, yield strength, young modulus, ductility% and hardness at additive percentage of 0.4% Ti+0.2%Cu nano particles incorporated into molten AA6061. Percentage of enhancement ultimate tensile strength is about 73.3%, yield strength about 82.7%, young modulus is about 21.2%, the  Vickers hardness about 42.6% and the decreasing in ductility was about 25.2% compared with the metal matrix (AA6061). The wear rate test was performed by using pin on disc rig for both hybrid nano composite and base metal (AA6061) under various loads (10,15and 20) N with sliding speed (1.282) m/sec at a (10) min’s time. The results showed a decrease in wear rate at 0.4%Ti+0.2%Cu compared with the base metal (AA6061). Improvement percentage of wear rate is about 105% at 20 N load.


2019 ◽  
Vol 8 (2S8) ◽  
pp. 1027-1032

Nano technology has fascinated the attention of numerous material scientists and design engineers. The nano scaled particulates incorporation exhibit many attractive and special properties. The inclusion of nano particulates into the copper matrix might augments the hardness, ultimate tensile strength and yield strength significantly increases, maintaining the ductility. In this paper, the nano Al2O3 reinforced copper - 5%tin- metal matrix composites were manufactured by stir casting technique and reinforcement is varied from 0wt. % to 9wt. % in ventures of 3wt. %. The nano composites are characterized in terms of their mechanical and wear properties. Results revealed that, the distribution of nano Al2O3 particulates is fairly uniform in copper - 5%tin metal matrix. As the level of reinforcement increases, hardness, yield strength, ultimate tensile strength, and wear resistance of the copper - 5%tin – nano Al2O3 metal matrix composites increases. The developed nano metal matrix composites may be an alternative material for bearing applications


2017 ◽  
Vol 898 ◽  
pp. 97-103 ◽  
Author(s):  
Zheng Hua Huang ◽  
Nan Zhou ◽  
Jing Xu ◽  
Yang De Li ◽  
Wei Rong Li

The microstructures, phase constitutions and mechanical properties of as-cast samples, extruded rods and plates of Mg-3.52Sn-3.32Al and Mg-6.54Sn-4.78Al alloys were investigated by optical microscopy, scanning electron microscopy, X-ray diffraction and mechanical testing. The results show that as-cast microstructure consists of α-Mg matrix, Mg2Sn and a few dispersed β-Mg17Al12 phases. The two as-cast alloys exhibit good tensile mechanical properties. After hot extrusion, dynamic recrystallization occurs. Average grain size reaches 6 μm ~ 8 μm for rods, and a lot of fine micro-scaled particles exist, resulting in significant enhancement of tensile mechanical properties. The extruded Mg-3.52Sn-3.32Al rod exhibits better comprehensive tensile mechanical property than AZ31B alloy, with tensile strength σb of 295 MPa, yield strength of 200 MPa and elongation of 21.5% at ambient temperature. The extruded Mg-6.54Sn-4.78Al rod exhibits equivalent comprehensive tensile mechanical properties with ZK60 alloy, achieving tensile strength of 355 MPa, yield strength of 275 MPa and elongation of 11% at ambient temperature. The extruded plates at ambient temperature performed a tensile strength of 270 MPa.


2004 ◽  
Vol 449-452 ◽  
pp. 305-308
Author(s):  
Lei Wang ◽  
Toshiro Kobayashi ◽  
Chun Ming Liu

Tensile test at loading velocities up to 10 m·s-1(strain rate up to 3.2x102s-1) was carried out forr SiCp/AC4CH composite and AC4CH alloy. The microstructure of the composite before and after tensile deformation was carefully examined with both optical microscope and SEM. The experimental results demonstrated that the ultimate tensile strength (UTS) and yield strength (YS) increase with increasing loading velocity up to 10 m·s-1. Comparing with AC4CH alloy, the fracture elongation of the composite is sensitivity with the increasing strain rate. The YS of both the composite and AC4CH alloy shows more sensitive than that of the UTS with the increasing strain rate, especially in the range of strain rate higher than 102s-1.


Sign in / Sign up

Export Citation Format

Share Document