scholarly journals Effects of Local Heating and Premelting in the Terminal Part of the e+ Track

2012 ◽  
Vol 733 ◽  
pp. 15-18 ◽  
Author(s):  
Dmitry Zvezhinskiy ◽  
Sergey V. Stepanov ◽  
Vsevolod Byakov ◽  
Bożena Zgardzińska

The terminal part of the e+ track (the positron blob) is formed during ionization slowing down and subsequent ion-electron recombinations produced by a positron. It releases up to 1 keV of energy, which is converted into heat within few picoseconds. If a bulk temperature of a medium is below, but close enough to its melting point, some region of a substance may melt, yielding a peculiar temperature dependence of the lifetime (LT) spectra. We have estimated properties of the molten region with a help of macroscopic heat con- duction equation and suggested a model describing temperature dependence of the ortho- positronium lifetime in frozen methanol, ethanol, butanol and water close to their melting points.

2008 ◽  
Vol 580-582 ◽  
pp. 319-322 ◽  
Author(s):  
Manabu Tanaka ◽  
Kentaro Yamamoto ◽  
Tashiro Shinichi ◽  
John J. Lowke

Study of current attachment at thermionic cathode for TIG arc at atmospheric pressure is attempted from numerical calculations of arc-electrodes unified model. The calculations show that the maximum temperature of arc plasma close to the cathode tip for W-2% ThO2 reaches 19,000 K and it is the highest value in comparison with the other temperatures for W-2% La2O3 and W-2% CeO2, because the current attachment at the cathode tip is constricted by a centralized limitation of liquid area of ThO2 due to its higher melting point. The calculations also show that, in cases of W- 2% La2O3 and W-2% CeO2, the liquid areas of La2O3 and Ce2O3 are widely expanded at the cathode tip due to their lower melting points and then produce uniform current attachments at the cathode. It is concluded that the current attachment at thermionic cathode is strongly dependent on work function, melting point and Richardson constant of emitter materials.


2007 ◽  
Vol 4 (10) ◽  
pp. 3814-3818 ◽  
Author(s):  
R. Zaleski ◽  
J. Goworek ◽  
A. Kierys

Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5394
Author(s):  
Mani Outis ◽  
João Paulo Leal ◽  
Maria Helena Casimiro ◽  
Bernardo Monteiro ◽  
Cláudia Cristina Lage Pereira

Here we discuss the influence of two different cations on the emissive properties of the highly emissive [Eu(fod)4]− anion. The studied Eu(III) salts were [C16Pyr][Eu(fod)4] (1), and the previously reported [Chol][Eu(fod)4]. C16Pyr stands for N-cetylpyridinium, Chol for cholinium and fod for 1,1,1,2,2,3,3-heptafluoro-7,7-dimethyloctane-4,6-dionate. 1 is classified as ionic liquid, with melting point close to 60 °C, and presented a luminescence quantum yield of (ϕ) 100%. Ultrabright emissive photopolymers were obtained for the first time using polysulfone as the host matrix. The films were prepared with incorporation of 10% (w/w) of 1 and [Chol][Eu(fod)4] in the polymeric matrix, which improved its thermal stability. Additionally, the luminescence of CholEu(fod)4/PSU presented a strong temperature dependence with a ratiometric thermal behavior.


2019 ◽  
Vol 9 (24) ◽  
pp. 5367 ◽  
Author(s):  
Karl Karu ◽  
Fred Elhi ◽  
Kaija Põhako-Esko ◽  
Vladislav Ivaništšev

In this work, we introduce a simulation-based method for predicting the melting point of ionic liquids without prior knowledge of their crystal structure. We run molecular dynamics simulations of biofriendly, choline cation-based ionic liquids and apply the method to predict their melting point. The root-mean-square error of the predicted values is below 24 K. We advocate that such precision is sufficient for designing ionic liquids with relatively low melting points. The workflow for simulations is available for everyone and can be adopted for any species from the wide chemical space of ionic liquids.


1965 ◽  
Vol 38 (4) ◽  
pp. 921-923 ◽  
Author(s):  
J. C. Mitchell

Abstract Melting point values for cis-1, 4-polybutadiene thus far reported in the literature have not exceeded +1° C. Varying values have been reported, both because of sample variations (differing amounts and distributions of chain imperfections) and because of variations in experimental techniques used to measure the melting point (in particular, varying heating rates). Some workers have extrapolated their data to predict that the melting point of a perfectly regular (100 per cent cis) cis-1, 4- polybutadiene (Tm°) would be close to +1° C. These extrapolations have been used to arrive at heats of fusion for the polymer from Flory's theory for melting point depression due to copolymeric impurities. One such value has been used in another investigation to estimate extents of crystallization from thermodynamic data. We wish to report observation of melting points several degrees higher than the assumed Tm° value of +1° C. Our experiments show that these higher values are not due to orientation effects.


1938 ◽  
Vol 34 (3) ◽  
pp. 459-464 ◽  
Author(s):  
E. B. Moullin

The purpose of this note is to draw attention to a certain correspondence between the melting-points of normal paraffins and of fatty acids and to indicate a simple interpretation of this phenomenon. If the number of carbon atoms in a normal paraffin is plotted against the corresponding melting temperature, all the points in the diagram lie very close to a smooth curve drawn among them. If a similar diagram is made for the fatty acids, the points corresponding to an even number of carbon atoms lie on a curve of the same character as that found for paraffins. The points for an odd number of carbon atoms lie on a separate but similar curve, exemplifying the well-known alternation property.


E. Heyn determined the melting points of mixtures of copper and cuprous oxide of compositions varying between 100 per cent. Cu and 88·24 per cent. Cu, 11·76 per cent. Cu 2 O. The results of his experiments are shown by the points marked + in fig. 1. These points fall on two curves intersecting at the eutectic point 1065° C., Cu 2 O 3·5 per cent., Cu 96·5 per cent. Heyn found that all his mixtures showed a halt in the cooling curve at this eutectic temperature, so that within the range of his experiments there is no evidence of the existence of solid solutions. C. N. Otin has lately published some experiments on the melting points of the system cuprous oxide-silica. He attempted to determine the melting point of cuprous oxide, but as some oxidation always took place in his experiments, and as he did not analyse the solid obtained (on account of having to remelt it to get it out of the platinum crucible), there is some doubt as to the actual composition of the substance of which he determined the melting point. The highest temperature at which he found a halt in the cooling curve was 1205° C.


1992 ◽  
Vol 06 (01) ◽  
pp. 1-24 ◽  
Author(s):  
GERHARD KIENEL

For the properties of thin films produced in a vacuum the most important variable is the mobility of the particles in the course of condensation, which is dependent on the melting point of the coating material, the substrate temperature and the energy of the particles as they strike the substrate. Because of the generally higher particle energies in plasma-assisted processes, under comparable coating conditions lower substrate temperatures suffice than in the case of conventional evaporative coating. Especially with coating materials having higher melting points, compact films can be produced only if the particle energies are sufficiently high.


2009 ◽  
Vol 83-86 ◽  
pp. 968-976
Author(s):  
A Cheng Wang ◽  
Ken Chuan Cheng ◽  
Yan Cherng Lin ◽  
Jeng Shen Huang

The debris re-adhering on the machining surface will affect the workpiece precision in EDM; therefore, the main purpose of this research is to study the re-sticky phenomenon of the powder metallurgy (PMM) in EDM. PMM with different melting points from 1450oC to 3410oC were used as EDM materials, the copper and the tungsten were chosen as the electrodes. The polarity in EDM was depended on the pole of the electrode. For observing the re-sticky position of the debris, the electrode was set no rotation or with 200 rpm rotational speed in EDM. The results showed that the melting point of PMM did not exceed 3000oC (PMM did not contain tungsten); the debris of PMM would not re-stick on the working surface no matter what polarity was used in EDM. However, only negative polarity can cause the re-adhesive effect when the melting point of PMM exceeded 3000oC. The debris would re-stick on any machining position when the electrode was not rotated in EDM. However, the debris would adhere on the central of the working area with 200 rpm rotational speed of the electrode.


1945 ◽  
Vol 23e (4) ◽  
pp. 131-137 ◽  
Author(s):  
E. W. Crampton ◽  
M. F. Mills

Male white rats were fed baked and unbaked diets containing blended cottonseed oil of two different melting points (45° and 57 °C) with and without antioxidant. The fat was incorporated in the diets at 4 and 16% levels. The relative nutritive value of the diets was measured by growth of rats, digestibility of the diet, and the proportion of fat deposited in the livers and carcasses.The digestibility of the fat decreased as the melting point increased from 45 °C to 57 °C The addition of 0.1% nordihydroguairetic acid to the fat showed no effect on the nutritive value of the diets. Increasing the fat content of the diet from 4 to 16% resulted in a decline in body weight that can be accounted for only on the assumption of poor utilization of fat. Heating the diet lowers its efficiency for rats.


Sign in / Sign up

Export Citation Format

Share Document