scholarly journals Effect of Cu on the Microstructure and Mechanical Properties of Diecast Al-Mg2Si-Mg Based Alloy

2014 ◽  
Vol 794-796 ◽  
pp. 172-177 ◽  
Author(s):  
Feng Yan ◽  
Shou Xun Ji ◽  
Zhong Yun Fan

This paper presents the effect of Cu on the microstructure and mechanical properties of diecast Al-8Mg2Si-6Mg-0.6Mn alloy. The Cu addition in the Al-8Mg2Si-6Mg-0.6Mn alloy can slightly increase the yield strength but decrease the elongation and ultimate tensile strength. Consequently, Cu is considered as a detrimental element in the alloy.

2018 ◽  
Vol 37 (1) ◽  
pp. 97-103 ◽  
Author(s):  
Hansong Xue ◽  
Xinyu Li ◽  
Weina Zhang ◽  
Zhihui Xing ◽  
Jinsong Rao ◽  
...  

AbstractThe effects of Bi on the microstructure and mechanical properties of AZ80-2Sn alloy were investigated. The results show that the addition of Bi within the as-cast AZ80-2Sn alloy promotes the formation of Mg3Bi2 phase, which can refine the grains and make the eutectic phases discontinuous. The addition of 0.5 % Bi within the as-extruded AZ80-2Sn alloy, the average grain size decreases to 12 μm and the fine granular Mg17Al12 and Mg3Bi2 phases are dispersed in the α-Mg matrix. With an increase in Bi content, the Mg17Al12 and Mg3Bi2 phases become coarsened and the grain size increases. The as-extruded AZ80-2Sn-0.5 %Bi alloy has the optimal properties, and the ultimate tensile strength, yield strength and elongation are 379.6 MPa, 247.1 MPa and 14.8 %, respectively.


2010 ◽  
Vol 152-153 ◽  
pp. 1083-1087
Author(s):  
Bo Wang ◽  
Yu Tao Zhao ◽  
Song Li Zhang ◽  
Gang Chen ◽  
Xiao Nong Cheng

In-situ (Al2O3+Al3Zr)p/A356 composites were synthesized by melt reaction technology and the effects of yttrium on microstructure and mechanical properties of the composites are investigated. The results indicate that the reinforced particulates Al2O3 and Al3Zr become smaller in size with yttrium addition, the sizes are about 0.5~2μm. The distribution becomes more homogeneous, the morphologies are spheroid-shape and ellipsoid-shape, the ambitus is blunt. The mechanical properties test results show the mechanical properties of the composites are greatly enhanced. With 0.4wt.% yttrium addition, the ultimate tensile strength and yield strength of the composites reach to 388MPa and 296MPa, which are increased 35.6% and 37.0% comparing with no yttrium addition, respectively. The effect mechanisms of yttrium are discussed.


2007 ◽  
Vol 546-549 ◽  
pp. 159-162 ◽  
Author(s):  
Yang Zhao ◽  
Qu Dong Wang ◽  
Jin Hai Gu ◽  
Yan Gao ◽  
Yan Tong

Microstructure and mechanical properties of three kinds of Mg-Gd-Sm-Zr alloys have been analyzed in this paper. Results exhibit that the microstructure of as-cast Mg-Gd-Sm-Zr alloy contains α-Mg and eutectic compounds which are mainly comprised of most Mg5Gd-base phases and a few Mg41Sm5-base phases by EDX and XRD analysis. Ultimate tensile strength and yield strength of the alloys can be significantly improved after T6 treatment. Mechanical properties of studied alloys in T6 condition are better than that of WE54-T6 alloy.


Crystals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1228
Author(s):  
Honglin Zhang ◽  
Zhigang Xu ◽  
Laszlo J. Kecskes ◽  
Sergey Yarmolenko ◽  
Jagannathan Sankar

The present work mainly investigated the effect of extrusion temperatures on the microstructure and mechanical properties of Mg-1.3Zn-0.5Ca (wt.%) alloys. The alloys were subjected to extrusion at 300 °C, 350 °C, and 400 °C with an extrusion ratio of 9.37. The results demonstrated that both the average size and volume fraction of dynamic recrystallized (DRXed) grains increased with increasing extrusion temperature (DRXed fractions of 0.43, 0.61, and 0.97 for 300 °C, 350 °C, and 400 °C, respectively). Moreover, the as-extruded alloys exhibited a typical basal fiber texture. The alloy extruded at 300 °C had a microstructure composed of fine DRXed grains of ~1.54 µm and strongly textured elongated unDRXed grains. It also had an ultimate tensile strength (UTS) of 355 MPa, tensile yield strength (TYS) of 284 MPa, and an elongation (EL) of 5.7%. In contrast, after extrusion at 400 °C, the microstructure was almost completely DRXed with a greatly weakened texture, resulting in an improved EL of 15.1% and UTS of 274 MPa, TYS of 220 MPa. At the intermediate temperature of 350 °C, the alloy had a UTS of 298 MPa, TYS of 234 MPa, and EL of 12.8%.


2018 ◽  
Vol 2 (1) ◽  

The as-cast pure magnesium (Mg), with a purity of 99.99%, was hot-extruded at 300 o C to prepare a Mg bar with a diameter of 8 mm. The microstructure and mechanical properties of the sample before and after extrusion weis obviously refined with a large number of subgrains rather than equre investigated. The results show that the asextruded microstructure iaxed grains. (10 1 2) tensile twins can be observed significantly in the microstructure at this temperature. Mechanical properties including yield strength (YS), ultimate tensile strength (UTS) increased greatly but uniform elongation (UE) decreased slightly as a result of work hardening.


2015 ◽  
Vol 816 ◽  
pp. 439-445 ◽  
Author(s):  
Xiao Hui Feng ◽  
Hong Min Jia ◽  
Tian Jiao Luo ◽  
Yun Teng Liu ◽  
Ji Xue Zhou ◽  
...  

The microstructure and mechanical properties of the high-purity magnesium (99.99wt.% Mg) extruded by single direct extrusion experiment were investigated. For the extrusion speed of 0.2mm/s, the microstructure of extruded Mg rods was composed of equiaxed fine dynamical recrystallized (DRXed) grains and some elongated coarse un-DRXed grains. The yield strength (YS) and the elongation of the extruded bars were 105.3MPa and 46.7% respectively. In the case of extrusion speed of 4.0mm/s, the DRXed grains were remarkably coarsened and the elongated coarse un-DRXed grains vanished, meanwhile lots of twins occurred and the intensity of basal-plane texture increased a little. With the extrusion speed being raised from 0.2mm/s to 4.0mm/s, the YS and the elongation decreased to 60.5MPa and 22.1% respectively, but the ultimate tensile strength (UTS) was improved from 154.7MPa to 178.8MPa.


Metals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 31
Author(s):  
Hongxin Liao ◽  
Taekyung Lee ◽  
Jiangfeng Song ◽  
Jonghyun Kim ◽  
Fusheng Pan

The microstructures and mechanical properties of the Mg88.5Zn5Y6.5-XREX (RE = Yb and Ce, X = 0, 1.5, 3.0, and 4.5) (wt.%) alloys were investigated in the present study. Mg88.5Zn5Y6.5 is composed of three phases, namely, α-Mg, long-period stacking ordered (LPSO) phases, and intermetallic compounds. The content of the LPSO phases decreased with the addition of Ce and Yb, and no LPSO phases were detected in Mg88.5Zn5Y2.0Yb4.5. The alloys containing the LPSO phases possessed a stratified microstructure and exhibited excellent mechanical properties. Mg88.5Zn5Y5.0Ce1.5 exhibited the highest creep resistance and mechanical strength at both room temperature and 200 °C, owing to its suitable microstructure and high thermal stability. The yield strength of Mg88.5Zn5Y5.0Ce1.5 at room temperature was 358 MPa. The ultimate tensile strength of Mg88.5Zn5Y5.0Ce1.5 at room temperature and 200 °C was 453 MPa and 360 MPa, respectively.


Metals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 790 ◽  
Author(s):  
Changping Tang ◽  
Kai Wu ◽  
Wenhui Liu ◽  
Di Feng ◽  
Xuezhao Wang ◽  
...  

The effects of Gd, Y content on the microstructure and mechanical properties of Mg-Gd-Y-Nd-Zr alloy were investigated using hardness measurements, X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectrometer (EDS), and uniaxial tensile testing. The results indicate that the alloys in as-cast condition mainly consist of α-Mg matrix and non-equilibrium eutectic Mg5.05RE (RE = Gd, Y, Nd). After solution treatment, the non-equilibrium eutectics dissolved into the matrix but some block shaped RE-rich particles were left at the grain boundaries and within grains. These particles are especially Y-rich and deteriorate the mechanical properties of the alloys. Both the compositions of the eutectic and the block shaped particle were independent of the total Gd, Y content of the alloys, but the number of the particles increases as the total Gd, Y content increases. The ultimate tensile strength increases as the total Gd, Y content decreases. A Mg-5.56Gd-3.38Y-1.11Nd-0.48Zr alloy with the highest ultimate tensile strength of 280 MPa and an elongation of 1.3% was fabricated. The high strength is attributed to the age hardening behavior and the decrease in block shaped particles.


Metals ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 385
Author(s):  
Yushi Qi ◽  
Heng Wang ◽  
Lili Chen ◽  
Hongming Zhang ◽  
Gang Chen ◽  
...  

A ZK61-Y magnesium (Mg) alloy wheel hub was prepared via liquid forging—isothermal forging process. The effects of Y-element contents on the microstructure and mechanical properties of liquid forging blanks were investigated. The formation order of the second phase was I-phase (Mg3Zn6Y) → W-phase (Mg3Zn3Y2) → Z-phase (Mg12ZnY) with the increase of the Y-element content. Meanwhile, the I-phase and Z-phase formed in the liquid forging process were beneficial to the grain refinement. The numerical simulation of the isothermal forging process was carried out to analyze the effects of forming temperature on the temperature and stress field in the forming parts using the software Deform-3D. Isothermal forging experiments and post heat treatments were conducted. The influence of isothermal forging temperature, heat treatment temperature and preservation time on the microstructure and mechanical properties of the forming parts were also studied. The dynamic recrystallization (DRX), second-phase hardening, and work hardening account for the improvement of properties after the isothermal forging process. The forming part forged at 380 °C displayed the outstanding properties. The elongation, yield strength, and ultimate tensile strength were 18.5%, 150 MPa and 315 MPa, respectively. The samples displayed an increased elongation and decreased strength after heat treatments. The 520 °C—1 h sample possessed the best mechanical properties, the elongation was 25.5%, the yield stress was 125 MPa and the ultimate tensile strength was 282 MPa. This can be ascribed to the recrystallization and the elimination of working hardening. Meanwhile, the second phase transformation (I-phase → W-phase → Mg2Y + MgZn2), dissolution, and decomposition can be observed, as well.


2016 ◽  
Vol 16 (1) ◽  
Author(s):  
Ayu Rizeki Ridhowati ◽  
Eka Febriyanti ◽  
Rini Riastuti

Warm rolling is one of the thermomechanical method has several advantages such as produces high mechanical properties, but does not decrease % elongation and toughness value because partial recrystallization phenomenon that produces micron-sized new grain. This paper reports the results of an investigation carried out on the effects of holding time annealing to mechanical properties Cu-Zn 70/30 alloy. These alloy after homogenization process and quenched in the air then heated to temperature of 300°C, later the heated copper samples are warm rolled at 25%, 30%, and 35% reduction, after that heated at temperature 300°C and held during 120 minutes. Then sample is experienced rewarm rolling with reduction 25%, 30%, and 35%. The results obtained showed that the ultimate tensile strength and yield strength are higher proportional with the increasing of % reduction, their values are 501,1 MPa; 599,3 MPa; later decrease to 546, 5 MPa and to yield strength are 441,8 MPa; 466,1 MPa; then decrease to 458,6 MPa. Moreover hardness value increase proportional with % reduction such as 154 HV; 162 HV; after that decrease to 160 HV While, % elongation decreases inversely proportional with % reduction namely 12,4%; 8,2%; later increase to 11,2 %. It is caused of the partial recrystallization phenomenon as evidenced by the presence micron-sized.AbstrakWarm rolling merupakan salah satu metode termomekanik yang mempunyai beberapa keuntungan yaitu salah satunya menghasilkan sifat mekanik yang tinggi, namun tidak mengurunkan nilai keuletan karena adanya fenomena rekristalisasi parsial yang menghasilkan butiran baru berbentuk micron. Paper ini menjelaskan tentang hasil penelitian berupa pengaruh persentase reduksi terhadap sifat mekanis paduan Cu-Zn 70/30. Paduan Cu-Zn 70/30 setelah dilakukan proses homogenisasi dan didinginkan di udara lalu dipanaskan ke suhu 300°C, kemudian masing-masing dilakukan warm rolling dengan persentase reduksi sebesar 25%, 30%, dan 35% kemudian ditahan di suhu 300°C dalam waktu 120 menit. Selanjutnya sampel dilakukan rewarm rolling dengan persentase reduksi sebesar 25%, 30%, dan 35%. Hasil penelitian yang dilakukan antara lain nilai kekuatan tarik (UTS dan YS) yang semakin tinggi sebanding dengan peningkatan % reduksi warm rolling yaitu masing-masing untuk nilai UTS sebesar 501,1 MPa; 599,3 MPa; lalu menurun menjadi 546,5 MPa serta untuk nilai kekuatan luluh sebesar 441,8 MPa; 466,1 MPa; lalu menurun menjadi 458,6 MPa. Selain itu, nilai kekerasan meningkat sebanding dengan peningkatan % reduksi warm rolling masing-masing sebesar 154 HV; 162 HV; lalu menurun menjadi 160 HV. Sedangkan persentase elongasi semakin menurun berbanding terbalik dengan peningkatan % reduksi masing-masing sebesar 12,4%; 8,2%; lalu meningkat menjadi 11,2%. Hal tersebut disebabkan karena adanya fenomena rekristalisasi parsial yang dibuktikan dengan kehadiran butir kecil berukuran mikron.Keywords : Cu-Zn 70/30 alloy, warm rolling, anneal, % reduction, mechanical properties


Sign in / Sign up

Export Citation Format

Share Document