Titanium Substrate Surfaces Coated with Hydroxyapatite by Magnetron Sputtering

2014 ◽  
Vol 798-799 ◽  
pp. 472-477
Author(s):  
Roseli Marins Balestra ◽  
Alexandre Antunes Ribeiro ◽  
Joao C. de Oliveira ◽  
Albano Cavaleiro ◽  
Marize Varela Oliveira

The deposition of hydroxyapatite coatings on titanium via sputtering techniques has been quite studied on commercial dense substrates, for use as a biomaterial. In this work, porous titanium samples produced by powder metallurgy and commercially dense titanium sheet, used as control, were used as substrates. The coatings were deposited by radio frequency magnetron sputtering using a hydroxyapatite target in argon atmosphere with different deposition times. Samples characterization was performed by Optical Microscopy, Scanning Electron Microscopy/Energy Dispersive Spectroscopy and low-angle X-ray Diffraction. Hydroxyapatite coating depositions were obtained on both titanium substrates. The results indicated the potential of this methodology for titanium substrates with homogeneous hydroxyapatite coatings.

2007 ◽  
Vol 1008 ◽  
Author(s):  
Zhendong Hong ◽  
Alexandre Mello ◽  
Tomohiko Yoshida ◽  
Lan Luan ◽  
Paula H. Stern ◽  
...  

AbstractHydroxyapatite coatings have been widely recognized for their biocompatibility and utility in promoting biointegration of implants in both osseous and soft tissue. Conventional sputtering techniques have shown some advantages over the commercially available plasma spraying method; however, the as-sputtered coatings are usually non-stoichiometric and amorphous which can cause some serious problems such as poor adhesion and excessive coating dissolution rate. A versatile right-angle radio frequency magnetron sputtering (RAMS) approach has been developed to deposit HA coatings on various substrates at low power levels. Using this alternative magnetron geometry, as-sputtered HA coatings are nearly stoichiometric, highly crystalline, and strongly bound to the substrate, as evidenced by analyses using x-ray diffraction (XRD), atomic force microscopy (AFM), x-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectroscopy (FTIR). In particular, coatings deposited on oriented substrates show a polycrystalline XRD pattern but with some strongly preferred orientations, indicating that HA crystallization is sensitive to the nature of the substrate. Post deposition heat treatment under high temperature does not result in a marked improvement in the degree of crystallinity of the coatings. To study the biocompatibility of these coatings, murine osteoblast cells were seeded onto various substrates. Cell density counts using fluorescence microscopy show that the best osteoblast proliferation is achieved on an HA RAMS-coated titanium substrate. These experiments demonstrate that RAMS is a promising coating technique for biomedical applications.


2021 ◽  
Vol In Press (In Press) ◽  
Author(s):  
Roghayeh Haghjoo ◽  
Seyed Khatiboleslam Sadrnezhaad ◽  
Nahid Hasanzadeh Nemati

: The present study applied a TiO2 nanocoating on a titanium foam substrate produced by powder metallurgy through magnetron sputtering. Scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD) were employed to investigate the surface morphologies of the porous specimens and pre- and post-coating phases, respectively. Also, the growth and proliferation of MG-63 cells (osteoblasts) and their attachment and proliferation on the coated porous titanium specimen (relative to the uncoated specimens) were studied using in vitro and methyl thiazol tetrazolium (MTT) cytotoxicity tests. Considering the porous macrostructure of the coated titanium specimen and the nanostructure of the TiO2 coating on the porous surface and macro-pore walls, the coated specimen was found to be effective in the biocompatibility improvement of dental and orthopedic implants.


1995 ◽  
Vol 405 ◽  
Author(s):  
S. M. Cho ◽  
K. Christensen ◽  
D. Wolfe ◽  
H. Ying ◽  
D. R. Lee ◽  
...  

AbstractWe have investigated on the effect of different substrate surfaces in changing the microstructure of μc-SixGe1-x:H films prepared by reactive magnetron sputtering. Films were deposited on hydrogen terminated Si(111), Si(100) surfaces, and surfaces chemical and plasma oxides. The thin film microstructure was characterized by Fourier transform infrared spectroscopy (FTIR), high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and Raman scattering.


2004 ◽  
Vol 845 ◽  
Author(s):  
Satoshi Hayakawa ◽  
Yongxing Liu ◽  
Kazuya Okamoto ◽  
Kanji Tsuru ◽  
Akiyoshi Osaka

ABSTRACTTitania submicron-scale rod arrays were fabricated on metallic titanium (α-Ti) surfaces by coating a layer of sodium tetraborate on titanium substrates and subsequent thermal treatment. Thin-film X-ray diffraction analysis indicated that the sodium tetraborate gave rutile (TiO2: PDF# 21-1276) submicron-scale rod arrays. The rods in the arrays are parallel to each other in the grain of metallic titanium surface. The titania submicron-scale rod arrays deposited apatite within 7 days after being soaked in a simulated body fluid, indicating that the rod arrays exhibit in vitro bioactivity.


Ceramics ◽  
2019 ◽  
Vol 2 (1) ◽  
pp. 180-189 ◽  
Author(s):  
Katarzyna Suchanek ◽  
Marcin Perzanowski ◽  
Janusz Lekki ◽  
Martyna Strąg ◽  
Marta Marszałek

Controlled growth of hydroxyapatite (HAp) coatings on titanium substrate plays an important role in the fabrication of the composites for bone tissue engineering. We describe the synthesis of the crystalline hydroxyapatite coatings on the Ti/TiO2 substrate through a hydrothermal method by using ethylenediamine tetraacetic acid disodium salt (Na2EDTA) and varying concentrations of ammonium hydroxide (NH4OH) in calcium-phosphate precursor solution. Na2EDTA serves as a chelating agent, while NH4OH is used as an alkaline source and crystal growth modifier. We characterized the HAp coatings using x-ray diffraction, scanning electron microscopy, and Raman spectroscopy. We also performed the elemental chemical analysis by means of a particle induced x–ray emission method. Our results show that there is a pH limit for which the hydrothermal deposition of HAp on titanium occurs. Moreover, we observed that NH4OH had a measurable influence on the coating thickness as well as on the size and shape of the HAp crystals. We found that with the increase of NH4OH concentration, the thickness of the Hap layer increases and its morphology changes from irregular flakes to well-defined hexagonal rods.


2014 ◽  
Vol 1040 ◽  
pp. 43-46 ◽  
Author(s):  
Yu.V. Li ◽  
Sergey Kulkov ◽  
Alexander A. Kozulin ◽  
Sergey A. Kinelovskii ◽  
Sergey N. Kulkov

In this paper the coatings on the titanium substrate surfaces obtained by the shaped-charge synthesis have been investigated. The shaped-charge synthesis was carried out using mixtures with specially synthesized complex salts containing W and Co. The studies included X-ray analysis, X-ray fluorescence analysis, and the measurements of coating microhardness. The relationship between mechanical properties of coatings and their phase and structural state has been determined.


Surfaces ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 106-114
Author(s):  
Yannick Hermans ◽  
Faraz Mehmood ◽  
Kerstin Lakus-Wollny ◽  
Jan P. Hofmann ◽  
Thomas Mayer ◽  
...  

Thin films of ZnWO4, a promising photocatalytic and scintillator material, were deposited for the first time using a reactive dual magnetron sputtering procedure. A ZnO target was operated using an RF signal, and a W target was operated using a DC signal. The power on the ZnO target was changed so that it would match the sputtering rate of the W target operated at 25 W. The effects of the process parameters were characterized using optical spectroscopy, X-ray diffraction, and scanning electron microscopy, including energy dispersive X-ray spectroscopy as well as X-ray photoelectron spectroscopy. It was found that stoichiometric microcrystalline ZnWO4 thin films could be obtained, by operating the ZnO target during the sputtering procedure at a power of 55 W and by post-annealing the resulting thin films for at least 10 h at 600 °C. As FTO coated glass substrates were used, annealing led as well to the incorporation of Na, resulting in n+ doped ZnWO4 thin films.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3191
Author(s):  
Arun Kumar Mukhopadhyay ◽  
Avishek Roy ◽  
Gourab Bhattacharjee ◽  
Sadhan Chandra Das ◽  
Abhijit Majumdar ◽  
...  

We report the surface stoichiometry of Tix-CuyNz thin film as a function of film depth. Films are deposited by high power impulse (HiPIMS) and DC magnetron sputtering (DCMS). The composition of Ti, Cu, and N in the deposited film is investigated by X-ray photoelectron spectroscopy (XPS). At a larger depth, the relative composition of Cu and Ti in the film is increased compared to the surface. The amount of adventitious carbon which is present on the film surface strongly decreases with film depth. Deposited films also contain a significant amount of oxygen whose origin is not fully clear. Grazing incidence X-ray diffraction (GIXD) shows a Cu3N phase on the surface, while transmission electron microscopy (TEM) indicates a polycrystalline structure and the presence of a Ti3CuN phase.


Membranes ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 373
Author(s):  
Wen-Yen Lin ◽  
Feng-Tsun Chien ◽  
Hsien-Chin Chiu ◽  
Jinn-Kong Sheu ◽  
Kuang-Po Hsueh

Zirconium-doped MgxZn1−xO (Zr-doped MZO) mixed-oxide films were investigated, and the temperature sensitivity of their electric and optical properties was characterized. Zr-doped MZO films were deposited through radio-frequency magnetron sputtering using a 4-inch ZnO/MgO/ZrO2 (75/20/5 wt%) target. Hall measurement, X-ray diffraction (XRD), transmittance, and X-ray photoelectron spectroscopy (XPS) data were obtained. The lowest sheet resistance, highest mobility, and highest concentration were 1.30 × 103 Ω/sq, 4.46 cm2/Vs, and 7.28 × 1019 cm−3, respectively. The XRD spectra of the as-grown and annealed Zr-doped MZO films contained MgxZn1−xO(002) and ZrO2(200) coupled with Mg(OH)2(101) at 34.49°, 34.88°, and 38.017°, respectively. The intensity of the XRD peak near 34.88° decreased with temperature because the films that segregated Zr4+ from ZrO2(200) increased. The absorption edges of the films were at approximately 348 nm under 80% transmittance because of the Mg content. XPS revealed that the amount of Zr4+ increased with the annealing temperature. Zr is a potentially promising double donor, providing up to two extra free electrons per ion when used in place of Zn2+.


2006 ◽  
Vol 20 (25n27) ◽  
pp. 3999-4004
Author(s):  
HIROSHI MATSUI ◽  
KAZUFUMI WATANABE

Antimony-platinum bilayers were prepared on titanium substrates by the two-step electrodeposition in the usual baths, and then surface alloys were formed by the atom diffusion in the solid phase. The simple antimony layer was little influenced by the substrate in both the measurements of X-ray diffraction and the i - E characteristic in a sulfuric acid solution. Regarding the bilayers, the catalytic activity in hydrogen evolution reaction was very sensitive to the presence of platinum, while the hydrogen adsorbability was quite insensitive. An interaction between antimony and platinum was confirmed by the appearance of a new dissolution wave in the electrochemical measurement and the occurrence of a new diffraction in the X-ray diffraction pattern after the heat-treatment of about 400°C. Although the new diffraction disagreed with any of the reported alloys, clear diffraction pattern of PtSb 2 alloy was observed, when the bilayers were heat-treated at about 600°C for one hour. Considering the penetration depth of X-ray, the alloying of antimony and platinum seems to occur also at low temperatures at least at the top surface.


Sign in / Sign up

Export Citation Format

Share Document