V2O5-Photocatalyzed Oxidation of Diphenylamine

2014 ◽  
Vol 807 ◽  
pp. 81-90
Author(s):  
C. Karunakaran ◽  
S. Karuthapandian

V2O5 catalyzes the oxidation of diphenylamine (DPA) to N-phenyl-p-benzoquinonimine (PBQ) in ethanol under UV light as well as under natural sunlight. The formation of PBQ was studied as a function of [DPA], V2O5-loading, airflow rate, light intensity, etc. Formation of PBQ is larger on illumination at 254 nm than at 365 nm and the catalyst is reusable. The mechanism of photocatalysis is discussed and the product formation analyzed using a kinetic model. ZnO and CdO enhance the V2O5-photocatalyzed formation of PBQ and the results are rationalized.

2021 ◽  
Vol 02 ◽  
Author(s):  
Magnus Christoffer Skov ◽  
Steffen Enggaard Kristensen ◽  
Teis Nørgaard Mikkelsen

Background: This paper describes how environmentally relevant parameters affect titanium dioxide's photocatalytic properties (TiO2) to decompose ozone (O3). Methods: Thus, experiments have been carried out in a box chamber with TiO2 coated roofing membrane samples to determine the significance of light intensity, temperature, initial O3 concentration, and relative humidity. Furthermore, an outdoor experiment has been conducted where the roofing membrane was subjected to natural sunlight. Results: The results show a significant photocatalytic effect of TiO2. The half-life of the O3 decay curve is 5.8 min in near-ambient UV-light exposure compared with 7.1 min in dark conditions. Experiments conducted at higher light intensity show a more extensive degradation of O3, where the value of the reactive uptake coefficient increases from 0.044 to 0.051. Also, the measurements carried out under natural sunlight show a photocatalytic effect where the uptake coefficient value is 0.046. A larger photocatalytic effect is detected for the experiments conducted at 283 K and 303 K temperatures compared with experiments under standard conditions. Conclusion: Experiments carried out with a very high initial concentration of O3 show that 28.1 μg of O3 is decomposed than ambient conditions, where 2.3 μg is destroyed. This demonstrates that light intensity, temperature, ozone concentration, and relative humidity significantly impact TiO2's degradation of O3.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Lin Deng ◽  
Zhiren Wu ◽  
Caiqian Yang ◽  
Yung-Li Wang

This study’s objective was to study the photodegradation of TCNM (trichloronitromethane) in water under UV light. The effects of light intensity, nitrate ions, chloride ions, humic acid, and pH on the photochemical degradation of TCNM were investigated under the irradiation of low pressure mercury lamp (λ= 254 nm, 12 W). The photodegradation rate of TCNM was found to increase with increasing the concentration of nitrate ions, chloride ions, humic acid, pH, and light intensity. The photodegradation of TCNM was examined at pH 6.0 with initial concentrations (C0) of TCNM at 10.0–200.0 µg/L. The overall rate of degradation of TCNM was modeled using a pseudofirst-order rate law. Finally, the proposed mechanism involved in the photodegradation of TCNM was also discussed by analysis. Results of this study can contribute to the development of new source control strategies for minimization of TCNM risk at drinking water and wastewater utilities.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Eun Jo Du ◽  
Tae Jung Ahn ◽  
Xianlan Wen ◽  
Dae-Won Seo ◽  
Duk L Na ◽  
...  

Solar irradiation including ultraviolet (UV) light causes tissue damage by generating reactive free radicals that can be electrophilic or nucleophilic due to unpaired electrons. Little is known about how free radicals induced by natural sunlight are rapidly detected and avoided by animals. We discover that Drosophila Transient Receptor Potential Ankyrin 1 (TRPA1), previously known only as an electrophile receptor, sensitively detects photochemically active sunlight through nucleophile sensitivity. Rapid light-dependent feeding deterrence in Drosophila was mediated only by the TRPA1(A) isoform, despite the TRPA1(A) and TRPA1(B) isoforms having similar electrophile sensitivities. Such isoform dependence re-emerges in the detection of structurally varied nucleophilic compounds and nucleophilicity-accompanying hydrogen peroxide (H2O2). Furthermore, these isoform-dependent mechanisms require a common set of TRPA1(A)-specific residues dispensable for electrophile detection. Collectively, TRPA1(A) rapidly responds to natural sunlight intensities through its nucleophile sensitivity as a receptor of photochemically generated radicals, leading to an acute light-induced behavioral shift in Drosophila.


Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1553 ◽  
Author(s):  
Jae Hong Park ◽  
Dong Seok Shin ◽  
Jae Kwan Lee

Animal wastewater is one of the wastewaters that has a color and is difficult to treat because it contains a large amount of non-degradable organic materials. The photo-assisted Fenton oxidation technique was applied to treat animal wastewater, and the optimal conditions of chemical oxygen demands (COD) removal were analyzed according to changes in pH, ferrous ion, H2O2, and ultraviolet (UV) light intensity as a single experimental condition. Experimental results showed that, under the single-factor experimental conditions, the optimal conditions for degradation of animal wastewater were pH 3.5, Fe(II) 0.01 M, H2O2 0.1 M, light intensity 3.524 mW/m2. Under the optimal conditions, COD removal efficiency was 91%, sludge production was 2.5 mL from 100 mL of solution, color removal efficiency was 80%, and coliform removal efficiency was 99.5%.


Polymers ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1819 ◽  
Author(s):  
Jui-Teng Lin ◽  
Da-Chuan Cheng ◽  
Kuo-Ti Chen ◽  
Hsia-Wei Liu

The kinetics and modeling of dual-wavelength (UV and blue) controlled photopolymerization confinement (PC) are presented and measured data are analyzed by analytic formulas and numerical data. The UV-light initiated inhibition effect is strongly monomer-dependent due to different C=C bond rate constants and conversion efficacies. Without the UV-light, for a given blue-light intensity, higher initiator concentration (C10) and rate constant (k’) lead to higher conversion, as also predicted by analytic formulas, in which the total conversion rate (RT) is an increasing function of C1 and k’R, which is proportional to k’[gB1C1]0.5. However, the coupling factor B1 plays a different role that higher B1 leads to higher conversion only in the transient regime; whereas higher B1 leads to lower steady-state conversion. For a fixed initiator concentration C10, higher inhibitor concentration (C20) leads to lower conversion due to a stronger inhibition effect. However, same conversion reduction was found for the same H-factor defined by H0 = [b1C10 − b2C20]. Conversion of blue-only are much higher than that of UV-only and UV-blue combined, in which high C20 results a strong reduction of blue-only-conversion, such that the UV-light serves as the turn-off (trigger) mechanism for the purpose of spatial confirmation within the overlap area of UV and blue light. For example, UV-light controlled methacrylate conversion of a glycidyl dimethacrylate resin is formulated with a tertiary amine co-initiator, and butyl nitrite. The system is subject to a continuous exposure of a blue light, but an on-off exposure of a UV-light. Finally, we developed a theoretical new finding for the criterion of a good material/candidate governed by a double ratio of light-intensity and concentration, [I20C20]/[I10C10].


2010 ◽  
Vol 43 (1) ◽  
pp. 177-184 ◽  
Author(s):  
N. Hayki ◽  
L. Lecamp ◽  
N. Désilles ◽  
P. Lebaudy

Catalysts ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1150
Author(s):  
Muhammad Hamza ◽  
Ataf Ali Altaf ◽  
Samia Kausar ◽  
Shahzad Murtaza ◽  
Nasir Rasool ◽  
...  

Dye removal through photocatalytic degradation employing nanomaterials as catalysts is a growing research area. In current studies, photocatalytic alizarin red (AR) dye degradation has been investigated by designing a series of Cr based manganese oxide nanomaterials (MH1–MH5). Synthesized nanomaterials were characterized by powder X-ray diffraction, scanning electron microscopy/energy dispersive x-ray, Brunauer–Emmett–Teller, and photoluminescence techniques and were utilized for photocatalytic AR dye degradation under UV light. AR dye degradation was monitored by UV–visible spectroscopy and percent degradation was studied for the effect of time, catalyst dose, different dye concentrations, and different pH values of dye solution. All the catalysts have shown more than 80% dye degradation exhibiting good catalytic efficiencies for dye removal. The catalytic pathway was analyzed by applying the kinetic model. A pseudo second-order model was found the best fitted kinetic model indicating a chemically-rate controlled mechanism. Values of constant R2 for all the factors studied were close to unity depicting a good correlation between experimental data.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Kai-Yu Huang ◽  
Chih-Ta Wang ◽  
Wei-Lung Chou ◽  
Chi-Min Shu

This study investigates the removal efficiency of PVA from aqueous solutions using UV irradiation in combination with the production of electrogenerated hydrogen peroxide (H2O2) at a polyacrylonitrile-based activated carbon fiber (ACF) cathode. Three cathode materials (i.e., platinum, graphite, and ACF) were fed with oxygen and used for the electrogeneration of H2O2. The amount of electrogenerated H2O2produced using the ACF cathode was five times greater than that generated using the graphite cathode and nearly 24 times greater than that from platinum cathode. Several parameters were evaluated to characterize the H2O2electrogeneration, such as current density, oxygen flow rate, solution pH, and the supporting electrolyte used. The optimum current density, oxygen flow rate, solution pH, and supporting electrolyte composition were found to be 10 mA cm−2, 500 cm3 min−1, pH 3, and Na2SO4, respectively. The PVA removal efficiencies were achieved under these conditions 3%, 16%, and 86% using UV, H2O2electrogeneration, and UV/H2O2electrogeneration, respectively. A UV light intensity of 0.6 mW cm−2was found to produce optimal PVA removal efficiency in the present study. A simple kinetic model was proposed which confirmed pseudo-first-order reaction. Reaction rate constant (kap) was found to depend on the UV light intensity.


Sign in / Sign up

Export Citation Format

Share Document