Elements Diffusion and Mechanical Properties of 15-5PH Stainless Steel Joint Brazed with BNi-2 Filler Metal

2016 ◽  
Vol 850 ◽  
pp. 700-705 ◽  
Author(s):  
Qian Qian Sun ◽  
Sheng Lu

The effects of brazing time on elements diffusion and bonding strength of vacuum brazed joints of 15-5PH stainless steel using filler metal BNi-2 were investigated. The results showed that the brazing time determined the content of diffused elements. If holding time is short the distribution of melting point depressants (MPD) concentrated on the middle zone of the joint, and the generation of brittle phases in the joint was unavoidable. With increasing time, MPD can diffuse to base metal adequately and full solid solution of nickel formed in the brazing joint. Joint strength firstly increased and then decreased with prolonging holding time.

Metals ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 785 ◽  
Author(s):  
Lin Wang ◽  
Daqian Sun ◽  
Hongmei Li ◽  
Xiaoyan Gu ◽  
Chengjie Shen

Ti3Al-Nb alloy (Ti-24Al-15Nb) was welded by a pulsed laser welding system without and with pure Nb filler metal. The results indicated that pure Nb filler metal had profound effects on the microstructures and mechanical properties of the laser-welded joints. The joint without filler metal consisted of the weld zone (α’2 + B2), heat affected zone HAZ1 (α2 + B2), HAZ2 (α2 + O + B2) and base metal (α2 + O + B2), and gas pores were generated in the weld resulting in the deterioration of the joint strength (330 MPa) and elongation (1.9%). When the Nb filler metal was used, the weld microstructure (NbTi solid solution + O + B2) was obtained, and the joint properties were significantly improved, which was associated with the strengthening effect of the NbTi solid solution, O phase precipitation and the slip transmission between O and B2 phases, and the restraining of the formation of martensite (α’2) and gas pores in the weld. The strength (724 MPa) and elongation (5.1%) of the joint increased by 119.4% and 168.4% compared with those of the joint without filler metal, and the joint strength was able to reach 81.7% of the base metal strength (886 MPa). It is favorable to use pure Nb filler metal for improving the mechanical properties of laser-welded Ti3Al-Nb alloy joints.


Metals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 526
Author(s):  
Yuzhen Lei ◽  
Hong Bian ◽  
Wei Fu ◽  
Xiaoguo Song ◽  
Jicai Feng ◽  
...  

Titanium and zirconia (ZrO2) ceramics are widely used in biomedical fields. This study aims to achieve reliable brazed joints of titanium/ZrO2 using biocompatible Au filler for implantable medical products. The effects of brazing temperature and holding time on the interfacial microstructures and mechanical properties of titanium/Au/ZrO2 joints were fully investigated by scanning electron microscopy (SEM), energy-dispersive spectrometry (EDS) and X-ray diffraction (XRD). The results indicated that the typical interfacial microstructure of the titanium/Au/ZrO2 joint was titanium/Ti3Au layer/TiAu layer/TiAu2 layer/TiAu4 layer/TiO layer/ZrO2 ceramic. With an increasing brazing temperature or holding time, the thickness of the Ti3Au + TiAu + TiAu2 layer increased gradually. The growth of the TiO layer was observed, which promoted metallurgical bonding between the filler metal and ZrO2 ceramic. The optimal shear strength of ~35.0 MPa was obtained at 1150 °C for 10 min. SEM characterization revealed that cracks initiated and propagated along the interface of TiAu2 and TiAu4 reaction layers.


2014 ◽  
Vol 936 ◽  
pp. 1671-1675
Author(s):  
Xue Rui Wu ◽  
Wen Qing Qu ◽  
Hai Tao Li

The microstructure and mechanical properties of brazed joints of oxygen-free copper and oxygen-free copper, nickel-plated kovar, monel, nickel-plated stainless steel were respectively studied by using AgCu28 and AuCu20 filler metal. Effects of different filler metal on microstructure of the brazed joints were analyzed through metallurgical microscope, SEM, EPMA. The brazed joints tensile strengths were analyzed through tensile test. The results indicate that the brazing process of oxygen-free copper and nickel content alloy used AgCu28 filler metal, nickel element is easy to diffused into AgCu28, AgCu28 filler metal with nickel element wetting spreadability along grain boundary of the oxygen - free copper, resulting in the penetration of the grain boundary of the oxygen-free copper. The joints brazed by AuCu20 filler metal have the better performance than the joints brazed by AgCu28 filler metal.


2005 ◽  
Vol 297-300 ◽  
pp. 2767-2771
Author(s):  
Ikuo Shohji ◽  
Satoshi Takayama ◽  
Takanori Nakazawa ◽  
Ken Matsumoto ◽  
Masanori Hikita

In the brazed joint of stainless steel with BNi-2 filler, brittle Cr-B compounds form in the vicinity of the centerline of the brazed joint. These compounds cause a decrease in joint strength. In this study, BNi-2 filler supplemented with Cr powder has been used in brazing stainless steel in orde r to disperse brittle Cr-B compounds uniformly in the brazed joint and improve joint strength. The mechanical properties and microstructures of the brazed joints were investigated. Moreover, a comp arison of the brazed joint with that using the BNi-2 filler was conducted.


2019 ◽  
Vol 91 (10) ◽  
pp. 35-41 ◽  
Author(s):  
Li Hong ◽  
Liu Xuan ◽  
Huang Haixin

Reliable ceramics/metal joints have an extensive application in the aerospace and biomedical area. However, ZrO2ceramic has not been investigated systematically compared to the Si3N4and Al2O3ceramic. Therefore, successful brazing of ZrO2ceramic and Ti-6A-4V alloy was achieved by using a binary active Ti-28Ni filler metal in this paper. The effect of holding time on the microstructure of ZrO2 ceramic/filler metal interface and mechanical properties of brazed joints was investigated. The results indicated that the representative interfacial microstructure was ZrO2ceramic/Ti2O/Ni2Ti4O/Ti-rich phase/Ti2Ni+α-Ti. With the increase of holding time, the thickness of Ti-rich layer in the interface of ZrO2/Ti-6Al-4Vjoint decreased obviously due to the diffusion of Ti atoms. Substantial brittle intermetallic compounds Ti2Ni and Ni2Ti4O were formed in the joint, which were detrimental to the mechanical properties of the brazed joints. The maximum shear strength of joint was 112.7 MPa when brazed at 1060 °C for 10 min.


2019 ◽  
Vol 9 (6) ◽  
pp. 1094
Author(s):  
Shubin Liu ◽  
Ikuo Shohji ◽  
Makoto Iioka ◽  
Anna Hashimoto ◽  
Junichiro Hirohashi ◽  
...  

A Ni-P plated layer of 20 μm thickness containing 11 wt.% P was formed on the surface of a stainless steel (SUS304) plate by electroplating. The microstructure and joint strength of the brazed joint with the electroplated Ni-11P layer were investigated. The results indicated that the filler metal was homogeneously distributed between the SUS304 plates and no voids or flaws formed in the brazed filler zone. Fe-Ni-Cr solid solutions were formed at the brazed interface. Moreover, P was mainly concentrated in such brazed filler zone to form P-containing phases. The average shear strength of the brazed joints was determined to be 47.3 MPa. The results demonstrated that the brazing of SUS304 plates using the electroplated Ni-11P layer as the filler metal was successfully realized.


2012 ◽  
Vol 585 ◽  
pp. 450-454
Author(s):  
Sohan Lal ◽  
C.P. Paul ◽  
C.H. Premsingh ◽  
P. Bhargava ◽  
S.K. Mishra ◽  
...  

Joining of dissimilar metals leading to better material utilization with improved functionality encouraged the research thrust on various dissimilar material joining processes including laser brazing. This papers reports the development of laser brazing joints and their characterization for 3 mm thick Cu sheet with 3 mm thick AISI 316L stainless steel (SS) sheet in butt joint configuration using 63Ag-35.25Cu-1.75Ti active brazing foil as filler metal. Comprehensive experiments were carried out to identify the optimum processing parameters for controlled simultaneous heating of the filler metal and sh-7eets by laser beam resulting in melting of the filler metal without melting Cu and SS sheets. Using this methodology, a number of brazed joints were successfully prepared at different set of processing parameters. The brazed joints were subjected to various non-destructive (visual and dye-penetrant test) and destructive (microscopic examination, energy dispersive spectroscopy, four point bend testing etc.) characterization techniques. The results demonstrated that laser energy per unit length of 100 J/m is threshold limit for feasibility of brazing process for selected metal and thickness combination. Microscopic studies of transverse section of laser brazed joint showed full penetration across the thickness without the melting of parent metals. EDS studies showed the diffusion of filler material (Ag) more towards the Cu sheet as compared to that of SS sheet. Four point bend test showed that the alignment of laser beam-metal joint was critical for the brazing joint strength and improved joint strength was achieved when the beam was at the centre of the brazing joint. A maximum joint strength of 343.7 MPa was achieved for laser power of 550 W at scan speed of 3 mm/min.


Alloy Digest ◽  
1998 ◽  
Vol 47 (12) ◽  

Abstract UGIMA 4404 (UGIMA 316L) is identical to UGINE 4404 (AISI 316L) in analysis, corrosion resistance, mechanical properties, and forging and welding ability, but not with respect to machinability. A specific melting process creates inclusions of malleable oxides with a low melting point. The inclusions improve machinability by 20-30% compared with AISI 316L (1.4404) stainless steel. This datasheet provides information on composition and physical properties. It also includes information on corrosion resistance as well as heat treating, machining, and joining. Filing Code: SS-735. Producer or source: Ugine-Savoie.


2010 ◽  
Vol 1276 ◽  
Author(s):  
F. García-Vázquez ◽  
I. Guzmán-Flores ◽  
A. Garza ◽  
J. Acevedo

AbstractBrazing is a unique method to permanently join a wide range of materials without oxidation. It has wide commercial application in fabricating components. This paper discusses results regarding the brazing process of 304 stainless steel. The experimental brazing is carried out using a nickel-based (Ni-11Cr-3.5Si-2.25B-3.5Fe) filler alloy. In this process, boron and silicon are incorporated to reduce the melting point, however they form hard and brittle intermetallic compounds with nickel (eutectic phases) which are detrimental to the mechanical properties of brazed joints. This investigation deals with the effects of holding time and brazing temperature on the microstructure of joint and base metal, intermetallic phases formation within the brazed joint as well as measurement of the tensile strength. The results show that a maximum tensile strength of 464 MPa is obtained at 1120°C and 4 h holding time. The shortest holding times will make boron diffuse insufficiently and generate a great deal of brittle boride components.


Sign in / Sign up

Export Citation Format

Share Document