Kinetics of Carbothermic Reduction of Ilmenite

2016 ◽  
Vol 852 ◽  
pp. 315-322 ◽  
Author(s):  
Min Chen ◽  
Xuan Xiao ◽  
Xue Feng Zhang

The reduction kinetics of ilmenite was investigated. Phase evolution during the reduction process was identified by XRD and morphology change was observed using SEM. Kinetic parameters of the activation energy and pre-exponential factor were determined by Kissinger-Akahira-Sunose (KAS) method and Coast-Redfern method&artificial isokinetic relationship (IKP) respectively. Results showed that when the reaction of titanium suboxides makes a growing contribution, the conversion dependence of activation energy has an ascending trend. When the conversion exceeded 0.7, the reactants almost consumed, and the process was controlled by diffusion.

2019 ◽  
Vol 9 (1) ◽  
pp. 26-36 ◽  
Author(s):  
Biljana Koturevic ◽  
Borivoj Adnadjevic ◽  
Jelena Jovanovic

AbstractThe kinetics of isothermal extraction of caffeine from guarana seed under the action of ultrasonic field with simultaneous cooling (UESC) was investigated. The isothermal kinetics curves were measured at temperatures range T = 17-58°C. Using the model-fitting method it was determined that the kinetics of caffeine extraction can be described by a theoretical Jander three-dimensional diffusional model. The values of the rate constant were calculated for different temperatures, as well as the kinetic parameters (activation energy (Ea) and pre-exponential factor (lnA)). Based on the results obtained, it is concluded that the rate constants of caffeine extraction under UESC are about 2 times higher in comparison to the values obtained for the extraction in the conditions of conventional heating (CH). The activation energy of the caffeine extraction under the UESC $\left( E_{\text{a}}\,^{\text{UESC}}=19.4\,\text{kJ}\cdot \text{mo}{{\text{l}}^{-1}} \right)$is lower than the values are for CH $\left( E_{\text{a}}\,^{\text{CH}}=21.8\,\text{kJ}\cdot \text{mo}{{\text{l}}^{-1}} \right).$Energy consumption for UESC is four times lower than for CH conditions. It is shown that there is a linear correlation relationship between kinetic parameters obtained for UESC and CH conditions. The changes in the values of kinetic parameters are explained by the model of selective transfer of energy from the reaction system to the reactant molecules.


2013 ◽  
Vol 575-576 ◽  
pp. 81-86 ◽  
Author(s):  
Feng Ling Ma ◽  
Hui Min Qi ◽  
Ya Ping Zhu ◽  
Xiao Wen Ren ◽  
Fan Wang

The kinetics of the thermal cure and ceramization of preceramic prehydropolysilazane (PHPS) was investigated by thermogravimetric analysis (TGA) under nitrogen atmosphere. The results indicated that the gases captured during the thermal cure and ceramization process of PHPS, which had three main weight loss events. The corresponding kinetic parameters including activation energy, pre-exponential factor and empirical order of the thermal cure and ceramization stages were evaluated by using Ozawa and Kissinger metnods, respectively.


2015 ◽  
Vol 60 (2) ◽  
pp. 981-983
Author(s):  
G. Smoła ◽  
A. Poczekajło ◽  
Z. Grzesik

Abstract Reduction mechanism and kinetics of NiS nickel sulphide obtained during the process of nickel sulphidation, have been studied as a function of temperature (723-873 K). It has been found that the reduction process follows linear kinetics with activation energy of 103 kJ/mol. It is important to note that during nickel sulphidation and after the reduction of nickel sulphide, the product sample shows highly developed surface, creating thus the potential possibilities to be applied in heterogeneous catalysis.


2008 ◽  
Vol 463 (1-2) ◽  
pp. 585-590 ◽  
Author(s):  
K.S. Abdel-Halim ◽  
M.H. Khedr ◽  
M.I. Nasr ◽  
M.Sh. Abdel-wahab

2019 ◽  
Vol 97 (11) ◽  
pp. 795-804 ◽  
Author(s):  
Dong Xiang ◽  
Weihua Zhu

The density functional tight-binding molecular dynamics approach was used to study the mechanisms and kinetics of initial pyrolysis and combustion reactions of isolated and multi-molecular FOX-7. Based on the thermal cleavage of bridge bonds, the pyrolysis process of FOX-7 can be divided into three stages. However, the combustion process can be divided into five decomposition stages, which is much more complex than the pyrolysis reactions. The vibrations in the mean temperature contain nodes signifying the formation of new products and thereby the transitions between the various stages in the pyrolysis and combustion processes. Activation energy and pre-exponential factor for the pyrolysis and combustion reactions of FOX-7 were obtained from the kinetic analysis. It is found that the activation energy of its pyrolysis and combustion reactions are very low, making both take place fast. Our simulations provide the first atomic-level look at the full dynamics of the complicated pyrolysis and combustion process of FOX-7.


2001 ◽  
Vol 36 (3) ◽  
pp. 589-604 ◽  
Author(s):  
Julian M. Dust ◽  
Christopher S. Warren

Abstract The kinetics of the alkaline rearrangement of O,O-dimethyl-(2,2,2-trichloro-1- hydroxyethyl)phosphonate, (trichlorfon, 1), the active insecticidal component in such formulations as Dylox, was followed at 25±0.5°C by high pressure liquid chromatography (UV-vis detector, 210 nm). The rearrangement product, O,Odimethyl- O-(2,2-dichloroethenyl)phosphate (dichlorovos, 2), which is a more potent biocide than trichlorfon, undergoes further reaction, and the kinetics, consequently, cannot be treated by a standard pseudo-first-order plot. A two-point van't Hoff (initial rates) method was used to obtain pseudo-first-order rate constants (kѱ) at 25, 35 and 45°C: 2.6 × 10-6, 7.4 × 10-6 and 2.5 × 10-5 s-1, respectively. Arrhenius treatment of this data gave an activation energy (Ea) of 88 kJ·mol-1 with a pre-exponential factor (A) of 5.5 × 109 s-1. Kinetic trials at pH 8.0 using phosphate and tris buffer systems show no buffer catalysis in this reaction and indicate that the rearrangement is subject to specific base catalysis. Estimates are reported for pseudo-first-order half-lives for trichlorfon at pH 8.0 for environmental conditions in aqueous systems in the Corner Brook region of western Newfoundland, part of the site of a recent trichlorfon aerial spray program.


2007 ◽  
Vol 128 ◽  
pp. 249-254 ◽  
Author(s):  
Urszula Narkiewicz ◽  
Marcin Podsiadły ◽  
Iwona Pełech ◽  
Waleran Arabczyk ◽  
M.J. Woźniak ◽  
...  

Nanocrystalline cobalt was carburised with ethylene in the range 340– 500°C to obtain Co(C) nanocapsules. The carbon deposit was reduced by a flow of hydrogen in the range 500– 560°C. The reduction kinetics were studied using thermogravimetry, described by the equation: α = Α[1-exp(-kt)n]. The apparent activation energy of the reduction process of the carbon deposit was determined. After carburisation and reduction the samples were examined by XRD and HRTEM.


2014 ◽  
Vol 988 ◽  
pp. 31-35
Author(s):  
Jia Le Song ◽  
Chan Chan Li ◽  
Zhi Mi Zhou ◽  
Chao Qiang Ye ◽  
Wei Guang Li

Curing kinetics of MEP-15/593 system and MEP-15/593/660 system is studied by means of differential scanning calorimetry (DSC). Curing kinetic parameters are evaluated and the relationship between diluent 660 and the curing properties is investigated. The results show that the diluent 660 can not only reduce viscosity and activation energy, but also improve the degree of cure and conversion ratio.


2012 ◽  
Vol 550-553 ◽  
pp. 2758-2762 ◽  
Author(s):  
Xi Jie Chu ◽  
Yong Gang Wang ◽  
Li Hong Zhao

The pyrolysis tests of Shenhua coal and Shenhua direct liquefaction residue have been carried out using thermogravimetric at the differential heating rate. The kinetic parameters k and E were calculated using DAEM method. Results show DAME model can describe the pyrolysis behavior of Shenhua coal within the range of 20% to 95%, the activation energy of coal pyrolysis ranges from 53.98 to 279.38 kJ/mol, and DAME model can describe the behavior of Shenhua direct liquefaction residue within the range of 10% to 80%, the activation energy of residue pyrolysis is about 170 kJ/mol. The results of which are basically consistent with the experimental data.


Sign in / Sign up

Export Citation Format

Share Document