High Strength Titanium Rods Produced by Thermomechanical Powder Consolidation

2016 ◽  
Vol 861 ◽  
pp. 147-152
Author(s):  
Fei Yang ◽  
Brian Gabbitas ◽  
Ajit Singh ◽  
Chung Fu Wang

In this paper, pure titanium rods, with high strength and ductility, were prepared by vacuum sintering titanium powder compacts at 1300oC for 2h and then hot extruding the as-sintered titanium billets at 900oC in air. The microstructure and property changes, after vacuum sintering and hot extrusion, were investigated. The results showed clear evidence of porosity in the microstructure of as-sintered titanium billet and tensile testing of as-sintered material gave yield strength, ultimate tensile strength and ductility values of 570MPa, 602MPa and 4%, respectively. After extrusion at 900oC, no obvious pores could be seen in the microstructure of as-extruded titanium rod, and the mechanical properties were significantly improved. The yield strength, ultimate tensile strength and the ductility reached 650MPa, 705MPa and 20%, respectively, which are much higher than values for CP titanium (grade 4), with a yield strength of 480MPa, ultimate tensile strength of 550MPa and ductility of 15%. The fracture characteristics of as-sintered and as-extruded titanium rods have also been investigated.

Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1511 ◽  
Author(s):  
Nannan Zhao ◽  
Chunyan Ban ◽  
Hongfei Wang ◽  
Jianzhong Cui

The mechanical properties and electrical conductivity of 6063 aluminum alloy subjected to equal-channel angular press (ECAP) at room temperature (RT), 200 °C, and two-step temperature schedule (TST) have been investigated in this study. The TST refers to one pass at 200 °C followed by further successive pressing at RT. It is shown that this method is effective in obtaining the combination of high strength and electrical conductivity. After two passes, the higher strength can be achieved in TST condition (328 MPa yield strength and 331 MPa ultimate tensile strength), where the changing parameter is processing temperature from the first pass at 200 °C to the second pass at RT, as compared to two passes in RT condition (241 MPa yield strength and 250 MPa ultimate tensile strength) and two passes in 200 °C condition (239 MPa yield strength and 258 MPa ultimate tensile strength). This performance could be associated with grain refinement and nanosized precipitates in TST condition. Moreover, in contrast to RT condition, a higher electrical conductivity was observed in TST condition. It reveals that high strength and electrical conductivity of 6063 aluminum alloy can be obtained simultaneously by ECAP processing in TST condition because of ultrafine-grained microstructure and nanosized precipitates.


2016 ◽  
Vol 61 (2) ◽  
pp. 475-480
Author(s):  
K. Bolanowski

Abstract The paper analyzes the influence of different heat treatment processes on the mechanical properties of low-alloy high-strength steel denoted by Polish Standard (PN) as 10MnVNb6. One of the findings is that, after aging, the mechanical properties of rolled steel are high: the yield strength may reach > 600 MPa, and the ultimate tensile strength is > 700 MPa. These properties are largely dependent on the grain size and dispersion of the strengthening phase in the ferrite matrix. Aging applied after hot rolling contributes to a considerable rise in the yield strength and ultimate tensile strength. The process of normalization causes a decrease in the average grain size and coalescence (reduction of dispersion) of the strengthening phase. When 10MnVNb6 steel was aged after normalization, there was not a complete recovery in its strength properties.


2013 ◽  
Vol 747-748 ◽  
pp. 443-448
Author(s):  
Feng Wang ◽  
Ji Bao Li ◽  
Ping Li Mao ◽  
Zheng Liu

A high strength and toughness extruded Mg-Zn-Y alloy based on quasicrystal-strengthening has been studied. The effect of extrusion and heat treatment on the microstructures and mechanical properties of Mg-Zn-Y alloy were studied by optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive spectrum (EDS), X-ray diffraction (XRD) and tensile testing. The experimental results indicated that the coarse dendrite crystals were broken through the hot extrusion, and dynamic recrystallization appeared during the hot extrusion, which obviously refined the hot-extruded microstructure to the average grain size about 20μm. A large amount of strengthening phases such as Mg3Zn6Y(I-Phase), Mg12ZnY(X-Phase) and MgZn2, which were massive, grainy and clavate, dispersedly precipitated from the matrix along grain boundary during ageing treatment at 225 after extrusion, and made the sliding of grain boundaries restrained, which resulted in an enhancement for mechanical properties to a great extent. At the same time, the tensile strength and yield strength increased after ageing treatment. After ageing treatment of 225×24h, the highest tensile strength and yield strength of the extruded Mg-Zn-Y alloy were obtained: σb=506.7MPa, σ0.2=373.5MPa, which were increased by 104.8% and 120.4%, respectively, compared with the extruded Mg-Zn-Y alloy, however the elongation decreased to 16.52%.


2017 ◽  
Vol 24 (3) ◽  
pp. 353-359
Author(s):  
Long-Jiang Zhang ◽  
Feng Qiu ◽  
Jin-Guo Wang ◽  
Qi-Chuan Jiang

AbstractIn this study, Al2014 matrix composites reinforced with nano-SiC particles were successfully fabricated by semi-solid stirring combined with hot extrusion. The obtained composites exhibited refined α-Al grains, reasonable nano-SiC particles distribution, good interface bonding, and high dislocation density. The addition of 0.5 vol.% nano-sized SiC particles significantly improved the tensile strengths of the Al2014 alloy without sacrificing the ductility. Compared with the Al2014 alloy, the yield strength, ultimate tensile strength, and fracture strain of 0.5 vol.% nano-SiCp/Al2014 composites increased from 242 MPa, 460 MPa, and 17.1% to 306 MPa, 532 MPa, and 17.7%, respectively.


2019 ◽  
Vol 297 ◽  
pp. 71-81
Author(s):  
Adel Saoudi ◽  
Djahida Lerari ◽  
Farida Khamouli ◽  
L'Hadi Atoui ◽  
Khaldoun Bachari

An artificial neural network (ANN) model has been developed for the analysis and simulation of the correlation between the chemical composition and mechanical properties of high strength low alloy (HSLA) steel X70. The input parameters of the model consist of the base metal chemical composition (C, Si, Mn, the sum of Cr+Cu+Ni+Mo, the sum of Nb+Ti+V, carbon equivalent CEpcm) and the yield strength (YS). The outputs of the ANN model include the ultimate tensile strength (UTS) of the test material. Scatter plots, correlation coefficient (R) and mean relative error (MRE) were used to assess the performance of the developed neural network. Interestingly, the model output is efficient to calculate the mechanical properties of high strength low alloy steels, especially the ultimate tensile strength as a function of chemical composition and yield strength of the used material. The obtained results are in a good agreement with experimental ones, with high correlation coefficient and low mean relative error. The predictions accuracy of the developed model also conforms to the results of mean paired T-test.


Author(s):  
S. K. Padisala ◽  
A. Bhardwaj ◽  
K. Poluri ◽  
A. K. Gupta

Nitinol shape memory alloy is well known for its shape memory effect and super elastic effect. In the present work, the improvement of mechanical properties of nitinol alloy like yield strength, ultimate tensile strength and micro-hardness is discussed along with the study of evolution of micro-structure after every pass to extend the applications of shape memory alloys into high strength application areas. Severe plastic deformation processes are usually adopted for producing fine grain structures which improve the mechanical properties of a material. One such severe deformation process is constrained groove pressing, which is considered as one of the best severe plastic deformation techniques for sheet metals. The results of constrained groove pressing process on nitinol alloy show that the yield strength and the ultimate tensile strength have increased by about 3.6 times 2.5 times respectively, with an increment of 50% and 74% in micro-hardness after 1st pass of constrained groove pressing and 2nd pass of constrained groove pressing respectively. Microstructure shows increase in martensitic phase after constrained groove pressing processing. Increasing in twinning and grain boundary density can be observed in constrained groove pressing processed nitinol, which are the reasons for the tremendous increase in the strength of the alloy. Thus, the constrained groove pressing process on nitinol alloy can increase its range of application for high strength requirements.


2014 ◽  
Vol 1019 ◽  
pp. 241-247 ◽  
Author(s):  
Fei Yang ◽  
Brian Gabbitas ◽  
Aamir Mukhtar ◽  
Warwick Downing

Titanium alloys have a number of features which make them attractive for use in aerospace, marine and chemical engineering, biological engineering, etc., due to their advantage of low density, high strength, and excellent corrosion resistance and biocompatibility. In this paper, Ti-6Al-4V (Ti-64) rods were prepared by vacuum sintering titanium alloy powder compacts at 1300°C for 2h and then hot extruding the as-sintered Ti-64 alloy billets at 1150°C in air. The microstructure and property changes, after vacuum sintering and hot extrusion, were investigated. The results showed clear evidence of porosity and a coarse lamellar microstructure in as-sintered Ti-64 alloy billets. Tensile testing of as-sintered material gave yield strength, ultimate tensile strength and ductility values of 850MPa, 985MPa and 2%, respectively. After extrusion at 1150°C, no obvious pores could be seen in the microstructure of as-extruded Ti-64 alloy rods and the lamellar microstructure was significantly refined, and the mechanical properties were significantly improved. The yield strength, ultimate tensile strength and the ductility reached 1130MPa, 1245MPa and 4.5%, respectively. Compared with the mechanical properties of Ti-64 alloy rod prepared by extruding a hot pressed Ti-64 alloy billet (1300°C for 5min, argon protective atmosphere) in air, the ductility of the Ti-64 alloy rod studied here is lower. The fracture characteristics of as-sintered and as-extruded Ti-64 alloy rods have also been investigated.


2018 ◽  
Vol 2 (1) ◽  

The as-cast pure magnesium (Mg), with a purity of 99.99%, was hot-extruded at 300 o C to prepare a Mg bar with a diameter of 8 mm. The microstructure and mechanical properties of the sample before and after extrusion weis obviously refined with a large number of subgrains rather than equre investigated. The results show that the asextruded microstructure iaxed grains. (10 1 2) tensile twins can be observed significantly in the microstructure at this temperature. Mechanical properties including yield strength (YS), ultimate tensile strength (UTS) increased greatly but uniform elongation (UE) decreased slightly as a result of work hardening.


Metals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 31
Author(s):  
Hongxin Liao ◽  
Taekyung Lee ◽  
Jiangfeng Song ◽  
Jonghyun Kim ◽  
Fusheng Pan

The microstructures and mechanical properties of the Mg88.5Zn5Y6.5-XREX (RE = Yb and Ce, X = 0, 1.5, 3.0, and 4.5) (wt.%) alloys were investigated in the present study. Mg88.5Zn5Y6.5 is composed of three phases, namely, α-Mg, long-period stacking ordered (LPSO) phases, and intermetallic compounds. The content of the LPSO phases decreased with the addition of Ce and Yb, and no LPSO phases were detected in Mg88.5Zn5Y2.0Yb4.5. The alloys containing the LPSO phases possessed a stratified microstructure and exhibited excellent mechanical properties. Mg88.5Zn5Y5.0Ce1.5 exhibited the highest creep resistance and mechanical strength at both room temperature and 200 °C, owing to its suitable microstructure and high thermal stability. The yield strength of Mg88.5Zn5Y5.0Ce1.5 at room temperature was 358 MPa. The ultimate tensile strength of Mg88.5Zn5Y5.0Ce1.5 at room temperature and 200 °C was 453 MPa and 360 MPa, respectively.


Sign in / Sign up

Export Citation Format

Share Document