Sheet Forming Processes for AW-7xxx Alloys: Relevant Process Parameters

2016 ◽  
Vol 879 ◽  
pp. 1036-1042 ◽  
Author(s):  
Manoj Kumar ◽  
Georg Kirov ◽  
Florian Grabner ◽  
Ermal Mukeli

High strength AW-7xxx sheet alloys are promising candidates to manufacture crash relevant parts, but their limited formability at room temperature presents a major challenge. Formability is controlled through heating rate, heat treatment temperature and time, quenching rate, forming temperature and strain rate. In the literature retrogression forming, W-temper forming, warm forming and hot stamping processes have been proposed to improve the formability of AW-7xxx alloys. Of these the greatest improvement in formability comes from W-temper forming and hot stamping. Considering the similarity to the conventional forming processes of cold stamping for aluminium and hot stamping for steel, the W-temper forming and hot stamping of aluminium are promising for AW-7xxx alloys.

2018 ◽  
Vol 941 ◽  
pp. 1366-1371
Author(s):  
Masahiro Sakata ◽  
Jong Yeong Oh ◽  
Ken Cho ◽  
Hiroyuki Y. Yasuda ◽  
Mitsuharu Todai ◽  
...  

In the present study, effects of heat treatment on microstructures and tensile properties of the cylindrical bars of Ti-48Al-2Cr-2Nb (at.%) alloy with unique layered microstructure consisting of equiaxed γ grains region (γ band) and duplex-like region fabricated by electron beam melting (EBM) were investigated. We found that it is possible to control width of the γ bands (Wγ) by heat treatments at 1100°C and 1190°C. The Wγ increases with decreasing heat treatment temperature. The bars heat-treated at 1190°C exhibit high elongation of 2.9% at room temperature (RT) with maintaining high strength. The RT elongation increases with increasing the Wγ because of increasing deformable regions. In contrast, the RT elongation of the bars decreases with increasing the Wγ when Wγ is very large. This is because the large γ band leads intergranular fracture. These results indicate that there is appropriate width for the γ band to obtain excellent tensile properties at RT.


2010 ◽  
Vol 638-642 ◽  
pp. 2263-2267
Author(s):  
Tae Kyu Kim ◽  
Chang Hee Han ◽  
Sung Ho Kim ◽  
Chan Bock Lee

This study deals with the fabrication of high strength ferritic/martensitic steels by a control of both the carbon concentration and the fabrication process parameters. The 9Cr-2W steels containing a carbon concentration of 0.05, 0.07 and 0.11 wt% were normalized at 1050oC for 1 h, followed by a tempering at 550 and 750oC for 2 h, respectively. The results of the tensile tests at room temperature indicated that the tensile strengths were increased with an increase of the carbon concentration from 0.05 wt% to 0.07 wt%, but no more increase was observed when the carbon concentration was increased further up to 0.11%. After a cold rolling from a 4 mm to a 1 mm thickness without/with an intermediate heat treatment and a final heat treatment, the results of the tensile tests exhibited that superior tensile properties were obtained when the fabrication processes were composed of a tempering at 550oC, and a cold rolling with several intermediate heat treatments. These results could be attributed to the finely distributed precipitates in the partially recrystallized matrix. The optimized carbon concentration and the controlled fabrication process parameters are thus suggested to fabricate a high strength 9Cr-2W steel sheet.


2019 ◽  
Vol 57 (12) ◽  
pp. 778-786
Author(s):  
Seong Guk Son ◽  
Yeonjung Hwang ◽  
Chang Wook Lee ◽  
Ji Hong Yoo ◽  
Minsu Choi

2018 ◽  
Vol 281 ◽  
pp. 959-963
Author(s):  
Feng Zhang ◽  
Chuan Qi Hu ◽  
Shi Chao Zhang ◽  
Hao Ran Sun ◽  
Yuan Tian ◽  
...  

In this paper, the modified phenolic resin-based adhesive was prepared by dissolving different components. After low temperature curing, SiC samples were bonded by the binder. The samples were treated at different temperatures (400°C, 800°C, 1200°C, 1500°C) under an inert atmosphere. The bonding strength of samples was tested after heat treatment at room temperature. The results showed that the bonding strength of the B4C modified phenolic resin (PF) based adhesive is the highest. When the heat treatment temperature was above 1200°C, the bond strength increased with the additive amount of boron carbide at room temperature. The microstructures of the samples were observed by optical microscope and scanning electron microscope. The effects of the modified filler and heat treatment temperature on the bonding strength of the phenolic resin based adhesive were investigated. The bonding strength of boron carbide-modified phenolic resin-based binder was tested under high temperature. It was found that the bond strength at high temperature was lower than that at room temperature, and the bond strength decreased with the increase of temperature.


1999 ◽  
Vol 13 (02) ◽  
pp. 51-58 ◽  
Author(s):  
K. YAMAMOTO ◽  
N. ARAI ◽  
K. HOTTA ◽  
K. SUGAWARA ◽  
H. HIROSE

Form the ESR measurements of Cu 2+ in Y 2 BaCuCuO 5, the growth rates of Y 2 BaCuCO 5 generated in the melts of Y 1+2n Ba 2+n Cu 3+n O x (n=0–0.4) have been quantitatively obtained as functions of heat-treatment temperature (1000–1400°C) and heat-treatment period (10–120 minutes). All the melted samples have been prepared by heating them in an atmospheric condition, and room-temperature quenching.


2011 ◽  
Vol 690 ◽  
pp. 29-32 ◽  
Author(s):  
Yong Qiang Wang ◽  
Gui Wang ◽  
Wei Qi Wang ◽  
Damon Kent ◽  
Matthew S. Dargusch

In this study the effects of different aging heat treatments on the properties and microstructure of a high strength, high toughness metastable β Ti, BTi-6554 (Ti-6Cr-5Mo-5V-4Al), have been compared. An initial β phase solution treatment was followed by aging at moderate temperatures in the α/β dual phase zone by either step aging directly from the solution treatment temperature or by quenching to room temperature prior to the aging heat treatment. The differing heat treatment methods have significant effects on the microstructure and mechanical properties.


2017 ◽  
Vol 18 (1) ◽  
pp. 69-74
Author(s):  
Leandro Voisin ◽  
Makoto Ohtsuka ◽  
Takashi Nakamura ◽  
S. Petrovska ◽  
B. Ilkiv ◽  
...  

Indium saving indium tin oxide ITO thin films have been deposited using a sputtering deposition technique in pure Ar and in mixed argon-oxygen atmosphere at room temperature. A transmittance value of more than 85 % in the visible region of the spectrum and a resistivity of 2420 µΩcm has been obtained for the thin films deposited in pure Ar and subsequently heat treated at 923 K. The structure of the as-deposited indium saving indium-tin oxide films was amorphous and the crystallinity was improved with increasing heat treatment temperature. An increase in the heat treatment temperature does not enhance the transmittance of the films at oxygen flow rate higher than 0.4 cm3/min.


1991 ◽  
Vol 246 ◽  
Author(s):  
Ming-Yuan Kao ◽  
Sepehr Fariabi ◽  
Paul E. Thoma ◽  
Husnu Ozkan ◽  
Louis Cartz

AbstractThe reversible transformations between the Austenite (A) and Martensite (M) phases of NITI shape memory wires having a 78°C austenlte finish temperature (950°C annealed) were studied In the cold work and heat treatment ranges between 14 to 62% and 400 to 525°C respectively. The ranges of peak Transformation Temperatures (TI), determined by Differential Scanning Calorimetry (DSC) at a 10°C/min rate, were found to be 56 to 75°C, -28 to 33°C, and 38 to 52°C for the respective high temperature A, low temperature M, and the Intermediate Rhombohedral (R) phases. The degree of cold work and heat treatment had significant effects on the TT of NITI wires. The peak TT of A and M decreases with Increasing cold work. Except for the 14% cold worked wires, the peak TT Increases with Increasing heat treatment temperature for M, and Increases with Increasing heat treatment temperature for A for temperatures higher than 450°C. The peak IT of R Increases with Increasing cold work and decreasing heat treat temperature.Using MoKα radiation, transmission x-ray diffraction analysis was utilized to determine the phases at room temperature on wires thinned down to 0.05 to 0.01 mm in diameter. The diffraction patterns of body-centered cubic austenite (132) and monodlinic martenslte (B19) for NITi were both Identified. In addition, extra diffraction lines observed for various samples were tentatively assigned to M and the Intermediate R-phase. Depending on the thermal history and the processing conditions, the NITI wires consist of either a pure M, a mixture of A and R, or a mixture of A, R, and M at room temperature.


Sign in / Sign up

Export Citation Format

Share Document