Preparation and Squeeze Casting of Nano-SiCP/A356 Composite Assisted with Ultrasonic Vibration Process

2016 ◽  
Vol 879 ◽  
pp. 1188-1193 ◽  
Author(s):  
Shu Lin Lü ◽  
Pan Xiao ◽  
Shu Sen Wu ◽  
Xiao Gang Fang

Metal matrix nanocomposites (MMNCs) have excited great interest in recent years, due to their very good properties. In this work, an efficient process by combining high-energy ball milling (HBM) with ultrasonic vibration (UV) was employed to prepare MMNCs. The composite granules containing nanoSiCP were produced by milling the nanoSiC and Al powders, and then were remelted in the matrix melt and treated by UV to prepare MMNCs. The MMNCs were finally formed by squeeze casting. The results indicate that globular nanoSiCP/Al compound granules with diameters between 1.5-2mm are obtained by dry HBM, and the nanoSiC particles are uniformly distributed in the granules. After remelting, nanoSiC particles in compound granules release in the matrix melt and are uniformly dispersed by UV within 2min. In MMNCs, nanoSiC particles concentrate mainly around eutectic phases, but no agglomeration is observed. The tensile strength of the MMNCs with 1wt.% nanoSiCP is increased by 19%, compared to the matrix A356 alloy.

Author(s):  
Enrique Martínez-Franco ◽  
Ming Li ◽  
Ricardo Cuenca Álvarez ◽  
Jesús González Hernández ◽  
Chao Ma ◽  
...  

Metal matrix nanocomposites (MMNCs) are anticipated to offer significantly better performance than existing superalloys. Nickel/alumina nanocomposite samples were fabricated with a powder metallurgy method, combining high-energy ball milling (HEBM) and spark plasma sintering (SPS). The objective of this research is to determine the effect of alumina nanoparticle fraction and HEBM parameters on the powder preparation and sintering processes, and resultant microstructure and properties. Nickel-based powders containing various fractions (1, 5 and 15 vol.%) alumina nanoparticles were prepared by HEBM. The initial particle sizes were 44 μm and 50 nm for nickel and alumina, respectively. The milling process was conducted by starting with mixing at 250 rpm for 5 min, followed by cycling operation at high and low speeds (1200 rpm for 4 min and 150 rpm for 1 min). Samples at different milling times (30, 60, 90 and 120 min) of each composition were obtained. Scanning electron microscopy (SEM) was used to evaluate the dispersion of nanoparticles in the powders at different milling times. SPS technique was used for consolidation of the prepared powders. SEM images showed that alumina nanoparticles are homogeneously dispersed in the metal matrix in the sample containing 15 vol.% alumina. Hardness measurements in cross sections of SPSed samples showed higher values for Ni/Al2O3 MMNC compared to pure Ni.


2018 ◽  
Vol 941 ◽  
pp. 2060-2065 ◽  
Author(s):  
Shu Sen Wu ◽  
Jian Yu Li ◽  
Ping An ◽  
Shu Lin Lü

Generally it is difficult to disperse nanosized particles uniformly in metal matrix. In this paper nanoSiC particles reinforced Al-5%Cu matrix composites were prepared by molten-metal process, combined with high energy ball-milling and ultrasonic vibration methods. Ultrasonic vibration treatment (UV) has been successfully used to disperse the particles distribution of nanoSiCp particles in the matrix. Big aggregates of particles are eliminated by the effects of cavitation and the acoustic streaming of UV for 1 min. All the particles aggregates are eliminated and the particles are uniformly distributed in the melt after treated by UV for 5 min. The refinement of Al2Cu phase in Al-Cu alloy is more obvious and more uniform distributed with the increase of UV time. The ultimate tensile strength (UTS), yield strength and elongation of the 1wt% nanosized SiCp/Al-5Cu composites treated by UV for 5 min are increased by 37%, 9.5% and 270% respectively, compared with the untreated composites.


Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 125
Author(s):  
Seyed Kiomars Moheimani ◽  
Mehran Dadkhah ◽  
Mohammad Hossein Mosallanejad ◽  
Abdollah Saboori

Metal matrix nanocomposites (MMNCs) with high specific strength have been of interest for numerous researchers. In the current study, Mg matrix nanocomposites reinforced with AlN nanoparticles were produced using the mechanical stirring-assisted casting method. Microstructure, hardness, physical, thermal and electrical properties of the produced composites were characterized in this work. According to the microstructural evaluations, the ceramic nanoparticles were uniformly dispersed within the matrix by applying a mechanical stirring. At higher AlN contents, however, some agglomerates were observed as a consequence of a particle-pushing mechanism during the solidification. Microhardness results showed a slight improvement in the mechanical strength of the nanocomposites following the addition of AlN nanoparticles. Interestingly, nanocomposite samples were featured with higher electrical and thermal conductivities, which can be attributed to the structural effect of nanoparticles within the matrix. Moreover, thermal expansion analysis of the nanocomposites indicated that the presence of nanoparticles lowered the Coefficient of Thermal Expansion (CTE) in the case of nanocomposites. All in all, this combination of properties, including high mechanical strength, thermal and electrical conductivity, together with low CTE, make these new nanocomposites very promising materials for electro packaging applications.


2016 ◽  
Vol 869 ◽  
pp. 277-282
Author(s):  
Moisés Luiz Parucker ◽  
César Edil da Costa ◽  
Viviane Lilian Soethe

Solid lubricants have had good acceptance when used in problem areas where the conventional lubricants cannot be applied: under extreme temperatures, high charges and in chemically reactive environments. In case of materials manufactured by powder metallurgy, particles of solid lubricants powders can be easily incorporated to the matrix volume at the mixing stage. In operation, this kind of material provides a thin layer of lubricant that prevents direct contact between the surfaces. The present study aimed at incorporating particles of second phase lubricant (h-BN) into a matrix of nickel by high-energy ball milling in order to obtain a self-lubricating composite with homogeneous phase distribution of lubricant in the matrix. Mixtures with 10 vol.% of h-BN varying the milling time of 5, 10, 15 and 20 hours and their relationship ball/powder of 20:1 were performed. The effect of milling time on the morphology and microstructure of the powders was studied by X-ray diffraction, SEM and EDS. The composite powders showed reduction in average particle size with increasing milling time and the milling higher than 5 hours resulted in equiaxial particles and the formation of nickel boride.


Author(s):  
Mohan Bangaru ◽  
Thirumal Azhagan Murugan ◽  
Rajadurai Arunachalam

In the recent days, aerospace, automotive and defense sectors have been the main driving force behind the search of lighter and stronger materials in order to use in the production of vehicles. The growing demand for the production of light weight structural components and systems is fulfilled by the development of innovative metallic materials such as composites and alloys particularly based on aluminium because of their desirable properties such as low density, good castability, excellent strength and excellent corrosion resistance. Widely employed processes such as gravity and pressure die casting are used for processing aluminium alloys but the components exhibit several casting defects such as porosity, cracks, segregation and hot tears etc. This drives the industries to develop new processes which produce defect free components in shorter time as they have been under competitive pressure. Of the many such processes, squeeze casting has good capacity to produce less defective components. Squeeze casting is the process in which the molten metal solidifies under the application of pressure. The development of Aluminium Matrix Composites (AMCs) through squeeze casting has been one of the major areas of research in recent times. Research works on AMCs reinforced with micrometric particles have shown that the ability to strengthen the matrix alloy by them is lesser than nanometric particles. Metal matrices reinforced with nanoparticles are characterized by significant improvement in strength and wear resistance, improved ductility and improved dimensional stability at elevated temperatures. But, nanosized ceramic particles constitute problems during fabrication as it is extremely difficult to obtain uniform dispersion of nanoparticles in liquid metals owing to their high viscosity, poor wettability in the metal matrix, and a large surface-to-volume ratio. These problems induce agglomeration and clustering of nanoparticles. The nanoparticles can be dispersed uniformly in the metal matrix by means of employing ultrasonic cavitations. Ultrasonic cavitations include the formation, growth and collapse of micro-bubbles in liquids, under cyclic high intensity ultrasonic waves. The cavitation bubbles collapse and generate a huge amount of energy, which could be used in dispersion of the nanoparticles more uniformly in the melt. In this study, squeeze casting is combined with ultrasonic cavitations to develop Metal Matrix Nanocomposites (MMNCs) of AA6061 – SiCp as a maiden attempt. The impact of varying volume percentage of SiCp nanoparticles (average size of 45 nm – 65 nm) by ultrasonic cavitations on mechanical properties such as ultimate tensile strength and hardness exhibited by MMNCs were analyzed. In this research, volume percentage of SiCp nanoparticles was varied at 0.4%, 0.8% and 1.2% respectively by employing ultrasonic vibrations at the amplitude of 70 μm to the melt of AA6061. The melt of AA6061-SiCp was poured into the pre heated die cavity and squeeze pressure of 105 Mpa was applied over it for a certain period while developing MMNCs. Scanning Electron Microscope (SEM) images showed the uniform distribution of SiCp nanoparticles in AA6061 matrix. Energy Dispersive Spectroscopy (EDS) in SEM confirmed the incorporation of SiCp in AA6061 matrix. The obtained results confirmed the effectiveness of ultrasonic cavitations in squeeze casting process to disperse the nanoparticles of SiCp uniformly in AA6061 matrix. The mechanical properties of MMNCs such as ultimate tensile strength and hardness exhibited an increasing trend with respect to the increase in volume percentage of SiCp nanoparticles. Thus there prevails a great scope to develop MMNCs of aluminium using ultrasonic cavitations in squeeze casting process.


Nanomaterials ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 1596 ◽  
Author(s):  
Artemiy Aborkin ◽  
Kirill Khorkov ◽  
Evgeny Prusov ◽  
Anatoly Ob’edkov ◽  
Kirill Kremlev ◽  
...  

Aluminum matrix composites reinforced with multiwalled carbon nanotubes (MWCNTs) are promising materials for applications in various high-tech industries. Control over the processes of interfacial interaction in Al/MWCNT composites is important to achieve a high level of mechanical properties. The present study describes the effects of coating MWCNTs with titanium carbide nanoparticles on the formation of mechanical properties and the evolution of the reinforcement structure in bulk aluminum matrix nanocomposites with low concentrations of MWCNTs under conditions of solid-phase consolidation of ball-milled powder mixtures. Using high-energy ball milling and uniaxial hot pressing, two types of bulk nanocomposites based on aluminum alloy AA5049 that were reinforced with microadditions of MWCNTs and MWCNTs coated with TiC nanoparticles were successfully produced. The microstructural and mechanical properties of the Al/MWCNT composites were investigated. The results showed that, on the one hand, the TiC nanoparticles on the surface of the MWCNT hybrid reinforcement reduced the damage of reinforcement under the intense exposure of milling bodies, and on the other hand, they reduced the contact area of the MWCNTs with the matrix material (acting as a barrier interface), which also locally inhibited the reaction between the matrix and the MWCNTs.


2013 ◽  
Vol 829 ◽  
pp. 515-519 ◽  
Author(s):  
Shaghayegh Gharegozloo ◽  
Hossein Abdizadeh ◽  
Abolghasem Ataie

The interest in using CNTs as the reinforcement of metal matrix nanocomposites has been growing considerably due to their enhanced properties. In the present work, nickel was reinforced by carbon nanotubes (CNTs) via high energy mechanical milling method. The effects of various amounts of CNTs (5%, 10%, 20% and 30%) and different milling times (1, 5, 10 and 15 hours) were investigated. X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and vibrating sample magnetometer (VSM) analysis were used for evaluation of phase composition, morphology and magnetic properties of the samples, respectively. The results showed a homogeneous dispersion of CNTs into the nickel matrix phase by mechanical milling. It was observed that the increase in the milling time, for a particular amount of CNTs, caused a decrease of mean crystallite size from 56 nm to 35 nm. The increase of CNTs amount also resulted in the powder particle refinement. VSM analysis showed that with the increase of CNTs from 0% to 30%, the magnetization of the samples decreases from 52.36 to 30.74 emu/g, and the coercivity of the nanocomposites increases from 61.45 to 114 Oe.


Author(s):  
S. Jayalakshmi ◽  
R. Arvind Singh

The chapter highlights the various processing/synthesizing routes of Light Metal Matrix Nanocomposites (LMMNCs), their microstructural characteristics, mechanical behaviour, and tribological properties. LMMNCs are advanced materials, in which nano-sized ceramic particles are reinforced into Al/Mg matrices. In conventional Metal Matrix Composites (MMCs), the incorporation of micron sized reinforcements in the matrix usually results in a considerable improvement in hardness and ultimate strength when compared to the unreinforced base material. However, most of these composites do not show plastic deformation (little or no yield) and exhibit drastic reduction in ductility. This poses a major limitation for MMCs to be used in real-time applications. In order to overcome this drawback, Al/Mg composites with nano-scale reinforcements have been developed. Based on numerous research works, it has been established that LMMNCs are better materials that possess superior properties, wherein both strength and ductility improvements along with excellent wear resistance can be achieved.


2013 ◽  
Vol 762 ◽  
pp. 457-464 ◽  
Author(s):  
Riccardo Casati ◽  
Matteo Amadio ◽  
Carlo Alberto Biffi ◽  
David Dellasega ◽  
Ausonio Tuissi ◽  
...  

Metal matrix nanocomposites have been produced by powder metallurgy route. Al and nanoAl2O3powders were grinded through high energy ball milling. Then, the composite powders were sintered by Equal Channel Angular Pressing (ECAP). 12 ECAP passes were carried out in order to improve the dispersion of the hard particles. SEM analysis was performed to investigate the distribution of the ceramic nanoparticles within the matrix. Hardness tests were executed to evaluate the mechanical behavior of the nanocomposites. Finally, mechanical strength values obtained by numerical models were compared with those estimated from hardness measurements. High energy ball milling followed by ECAP process revealed to be a suitable route for the production of metal matrix composites reinforced with well dispersed nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document