Evaluation of Filtration Properties of Clay Suspensions under Different Thermic Conditions

2016 ◽  
Vol 881 ◽  
pp. 206-211
Author(s):  
R.C.A.M. Nascimento ◽  
A.C.A. Costa ◽  
L.A. Fernandes ◽  
Luciana Viana Amorim

In clay suspensions designed for drilling, the sodic bentonite clay is commonly chosen for its better hydration capacity compared to the other kinds. The sodium bentonite clay is essentially composed by montmorilonite, a clay mineral that belongs to the group of smectites. This work aims to evaluate the behavior of clay suspensions under different thermic conditions. For that, were studied suspensions prepared with sodium bentonite clay, in concentrations varying between 2.5% and 6.4%, under different temperatures and also types of aging. The suspensions were tested based on a matrix of experimental planning. The filtration properties were determined by the filtrate volume, the relation of filtrate volume with time of filtration, the mudcake thickness and the permeability of the mudcake. The results exhibited that the high temperature promotes a gelification state of the suspensions, being therefore responsible for the high values of the filtration properties.

2001 ◽  
Vol 19 (1-6) ◽  
pp. 103-120 ◽  
Author(s):  
M Benna ◽  
N Kbir-Ariguib ◽  
C Clinard ◽  
F Bergaya

Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3377
Author(s):  
Zirui Huang ◽  
Meiling Zhong ◽  
Haibo Yang ◽  
Enqin Xu ◽  
Dehui Ji ◽  
...  

The isothermal crystallization of poly(l-lactide) (PLLA) has been investigated by in-situ wide angle X-ray diffraction (WAXD) and polarized optical microscopes (POM) equipped with a hot-stage accessory. Results showed that the spherulites of PLLA were formed at high temperature, whereas irregular morphology was observed under a low temperature. This can be attributed to the varying rates of crystallization of PLLA at different temperatures. At low temperatures, the nucleation rate is fast and hence the chains diffuse very slow, resulting in the formation of imperfect crystals. On the other hand, at high temperatures, the nucleation rate is slow and the chains diffuse fast, leading to the formation of perfect crystals. The change in the value of the Avrami exponent with temperature further verifies the varying trend in the morphological feature of the crystals.


Cerâmica ◽  
2018 ◽  
Vol 64 (370) ◽  
pp. 254-265 ◽  
Author(s):  
B. M. A. Brito ◽  
P. M. Bastos ◽  
A. J. A. Gama ◽  
J. M. Cartaxo ◽  
G. A. Neves ◽  
...  

Abstract Over the past few years, considerable research has been conducted using the techniques of mixture delineation and statistical modeling. Through this methodology, applications in various technological fields have been found/optimized, especially in clay technology, leading to greater efficiency and reliability. This work studied the influence of carboxymethylcellulose on the rheological and filtration properties of bentonite dispersions to be applied in water-based drilling fluids using experimental planning and statistical analysis for clay mixtures. The dispersions were prepared according to Petrobras standard EP-1EP-00011-A, which deals with the testing of water-based drilling fluid viscosifiers for oil prospecting. The clay mixtures were transformed into sodic compounds, and carboxymethylcellulose additives of high and low molar mass were added, in order to improve their rheology and filtrate volume. Experimental planning and statistical analysis were used to verify the effect. The regression models were calculated for the relation between the compositions and the following rheological properties: apparent viscosity, plastic viscosity, and filtrate volume. The significance and validity of the models were confirmed. The results showed that the 3D response surfaces of the compositions with high molecular weight carboxymethylcellulose added were the ones that most contributed to the rise in apparent viscosity and plastic viscosity, and that those with low molecular weight were the ones that most helped in the reduction of the filtrate volume. Another important observation is that the experimental planning and statistical analysis can be used as an important auxiliary tool to optimize the rheological properties and filtrate volume of bentonite clay dispersions for use in drilling fluids when carboxymethylcellulose is added.


Alloy Digest ◽  
2006 ◽  
Vol 55 (1) ◽  

Abstract CLC 18.10LN is an austenitic stainless steel with 18% Cr, 9.5% Ni, and 0.14% N to provide good corrosion resistance at strengths above the other low-carbon stainless steels. This datasheet provides information on composition, physical properties, elasticity, tensile properties, and shear strength as well as creep. It also includes information on high temperature performance and corrosion resistance as well as forming, machining, and joining. Filing Code: SS-950. Producer or source: Industeel USA, LLC.


2019 ◽  
Vol 32 (1) ◽  
pp. 143-151 ◽  
Author(s):  
Luma Rayane de Lima Nunes ◽  
Paloma Rayane Pinheiro ◽  
Charles Lobo Pinheiro ◽  
Kelly Andressa Peres Lima ◽  
Alek Sandro Dutra

ABSTRACT Salinity is prejudicial to plant development, causing different types of damage to species, or even between genotypes of the same species, with the effects being aggravated when combined with other types of stress, such as heat stress. The aim of this study was to evaluate the tolerance of cowpea genotypes (Vigna unguiculata L. Walp.) to salt stress at different temperatures. Seeds of the Pujante, Epace 10 and Marataoã genotypes were placed on paper rolls (Germitest®) moistened with different salt concentrations of 0.0 (control), 1.5, 3.0, 4.5 and 6.0 dS m-1, and placed in a germination chamber (BOD) at temperatures of 20, 25, 30 and 35°C. The experiment was conducted in a completely randomised design, in a 3 × 4 × 5 scheme of subdivided plots, with four replications per treatment. The variables under analysis were germination percentage, first germination count, shoot and root length, and total seedling dry weight. At temperatures of 30 and 35°C, increases in the salt concentration were more damaging to germination in the Epace 10 and Pujante genotypes, while for the Marataoã genotype, damage occurred at the temperature of 20°C. At 25°C, germination and vigour in the genotypes were higher, with the Pujante genotype proving to be more tolerant to salt stress, whereas Epace 10 and Marataoã were more tolerant to high temperatures. Germination in the cowpea genotypes was more sensitive to salt stress when subjected to heat stress caused by the low temperature of 20°C or high temperature of 35°C.


Author(s):  
D. T. Gauld ◽  
J. E. G. Raymont

The respiratory rates of three species of planktonic copepods, Acartia clausi, Centropages hamatus and Temora longicornis, were measured at four different temperatures.The relationship between respiratory rate and temperature was found to be similar to that previously found for Calanus, although the slope of the curves differed in the different species.The observations on Centropages at 13 and 170 C. can be divided into two groups and it is suggested that the differences are due to the use of copepods from two different generations.The relationship between the respiratory rates and lengths of Acartia and Centropages agreed very well with that previously found for other species. That for Temora was rather different: the difference is probably due to the distinct difference in the shape of the body of Temora from those of the other species.The application of these measurements to estimates of the food requirements of the copepods is discussed.


Author(s):  
T. Sand ◽  
A. Edgren ◽  
C. Geers ◽  
V. Asokan ◽  
J. Eklund ◽  
...  

AbstractA new approach to reduce the chromium and aluminium concentrations in FeCrAl alloys without significantly impairing corrosion resistance is to alloy with 1–2 wt.% silicon. This paper investigates the “silicon effect” on oxidation by comparing the oxidation behavior and scale microstructure of two FeCrAl alloys, one alloyed with silicon and the other not, in dry and wet air at 600 °C and 800 °C. Both alloys formed thin protective oxide scales and the Cr-evaporation rates were small. In wet air at 800 °C the Si-alloyed FeCrAl formed an oxide scale containing mullite and tridymite together with α- and γ-alumina. It is suggested that the reported improvement of the corrosion resistance of Al- and Cr-lean FeCrAl’s by silicon alloying is caused by the appearance of Si-rich phases in the scale.


1984 ◽  
Vol 247 (2) ◽  
pp. R250-R256
Author(s):  
H. G. Scholubbers ◽  
W. Taylor ◽  
L. Rensing

Membrane properties of whole cells of Gonyaulax polyedra were measured by fluorescence polarization. Circadian changes of fluorescence polarization exist in exponentially growing cultures. They show an amplitude larger than that of stationary cultures, indicating that a part of the change is due to or amplified by an ongoing cell cycle. Measurements of parameters of the circadian glow rhythm were analyzed for possible correlation with the membrane data. Considerable differences (Q10 = 2.5-3.0) in fluorescence polarization were found in cultures kept at different temperatures ranging from 15 to 27.5 degrees C. The free-running period length at different temperatures, on the other hand, differed only slightly (Q10 = 0.9-1.1). Stationary cultures showed higher fluorescence polarization compared with growing cultures, whereas the free-running period lengths did not differ in cultures of various densities and growth rates. Temperature steps of different sign changed the fluorescence polarization slightly in different directions. The phase shift of 4-h pulses (-5, -9, +7 degrees C) resulted in maximal phase advances of 4, 6, and 2 h, respectively. The phasing of the phase-response curves was identical in all these experiments, a finding not to be expected if the pulses act via the measured membrane properties. Pulses of drugs that change the fluorescence polarization (e.g., chlorpromazine and lidocaine) did not or only slightly phase-shift the circadian rhythm.


It is now generally recognised that future definitions of the units of length will probably be based on the length of a wave of visible light. At present the wave-length of the red radiation of cadmium serves as the basis of all measurements of the lengths of electro-magnetic waves which are perceptible by optical means, and provisional sanction has been given to measurements of length on the same basis, as an alternative to direct reference to the metre. Whether the cadmium red radiation provides the best reference standard for all measurements of length has not yet been definitely established. Two international committees, one representing spectroscopists and the other metrologists, have sanctioned standard specifications for cadmium lamps of the Michelson type from which the red radiation may be produced. The two specifications differ from one another in certain details, but both are subject to the same objections. These objections are directed partly against the high temperature at which it is necessary to run the lamp and partly against the high voltage required to excite the radiation. Therefore, such hyperfine structure and asymmetry as may be present in the red line of cadmium is likely to be masked in the Michelson lamp by a combination of two phenomena —the enhanced Doppler effect due to the high temperature of the radiating cadmium atoms, and the effect of the moderately high intensity of the electric field. Were this not so, it might be somewhat surprising that no definite evidence of fine structure or asymmetry had so far been observed in the red line from the Michelson lamp, notwithstanding the many careful examinations, with the aid of the most sensitive interferometers, to which this line has been subjected, in view of its importance as the reference standard for all other wave-lengths. Recently Nagaoka and Sugiura have recorded that they have observed slight evidences of structure in the red radiation when excited under special conditions in which great precautions were taken to ensure extreme sharpness of the line. It is believed, however, that no subsequent confirmation of this effect has yet been published.


Geofluids ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Guanghui Jiang ◽  
Jianping Zuo ◽  
Teng Ma ◽  
Xu Wei

Understanding the change of permeability of rocks before and after heating is of great significance for exploitation of hydrocarbon resources and disposal of nuclear waste. The rock permeability under high temperature cannot be measured with most of the existing methods. In this paper, quality, wave velocity, and permeability of granite specimen from Maluanshan tunnel are measured after high temperature processing. Quality and wave velocity of granite decrease and permeability of granite increases with increasing temperature. Using porosity as the medium, a new wave velocity-permeability model is established with modified wave velocity-porosity formula and Kozeny-Carman formula. Under some given wave velocities and corresponding permeabilities through experiment, the permeabilities at different temperatures and wave velocities can be obtained. By comparing the experimental and the theoretical results, the proposed formulas are verified. In addition, a sensitivity analysis is performed to examine the effect of particle size, wave velocities in rock matrix, and pore fluid on permeability: permeability increases with increasing particle size, wave velocities in rock matrix, and pore fluid; the higher the rock wave velocity, the lower the effect of wave velocities in rock matrix and pore fluid on permeability.


Sign in / Sign up

Export Citation Format

Share Document