Improvement of Mechanical Properties of CNT/Epoxy Nano Composites Using the B4C by Taguchi Method

2017 ◽  
Vol 900 ◽  
pp. 105-109
Author(s):  
Mustafa Taşyürek ◽  
Cihad Nazik

In this study, production and mechanical properties of the hybrid nanocomposite were investigated experimentally and estimated. Hybrid nanocomposites include boron carbide (B4C) and multi walled carbon nanotube (CNT) in the epoxy resin. B4C and CNT mixed into the epoxy with different percentages and produced. Tensile strength values of the produced samples was determined and compared. Thermal stability of the samples was analyzed by TGA. Samples are diversified by Taguchi method. The optimum sample was determined by comparison of the experimental and estimated results. Finally, the effects on each of the parameters were determined.

2019 ◽  
Vol 947 ◽  
pp. 77-81
Author(s):  
Natsuda Palawat ◽  
Phasawat Chaiwutthinan ◽  
Sarintorn Limpanart ◽  
Amnouy Larpkasemsuk ◽  
Anyaporn Boonmahitthisud

The aim of this study is to improve the physical properties of poly(lactic acid) (PLA) by incorporating thermoplastic polyurethane (TPU), organo-montmorillonite (OMMT) and/or nanosilica (nSiO2). PLA was first melt mixed with five loadings of TPU (10–50 wt%) on a twin-screw extruder, followed by injection molding. The addition of TPU was found to increase the impact strength, elongation at break and thermal stability of the blends, but decrease the tensile strength and Young’s modulus. Based on a better combination of the mechanical properties, the 70/30 (w/w) PLA/TPU blend was selected for preparing both single and hybrid nanocomposites with a fix total nanofiller content of 5 parts per hundred of resin (phr), and the OMMT/nSiO2 weight ratios were 5/0, 2/3, 3/2 and 0/5 (phr/phr). The Young’s modulus and thermal stability of the nanocomposites were all higher than those of the neat 70/30 PLA/TPU blend, but at the expense of reducing the tensile strength, elongation at break and impact strength. However, all the nanocomposites exhibited higher impact strength and Young’s modulus than the neat PLA. Among the four nanocomposites, a single-filler nanocomposite containing 5 phr nSiO2 exhibited the highest impact strength and thermal stability, indicating that there was no synergistic effect of the two nanofillers on the investigated physical properties. However, the hybrid nanocomposite containing 2/3 (phr/phr) OMMT/nSiO2 possessed a compromise in the tensile properties.


2008 ◽  
Vol 584-586 ◽  
pp. 960-965 ◽  
Author(s):  
Tamara Kravchenko ◽  
Alexander Korshunov ◽  
Natalia Zhdanova ◽  
Lev Polyakov ◽  
Irina Kaganova

Annealed oxygen-free and tough-pitch copper samples have been processed by equalchannel angular pressing (ECAP) by route BC. The samples included 8 x 8 mm section pieces and a 40 mm diameter bar. Thermal stability was assessed based on the changes in the standard mechanical properties (conventional yield strength, tensile strength, elongation, proportional elongation and contraction) after annealing at different temperatures for 1 hour. Thermal stability of the same grade of material has been found to be different for different batches and to depend on the structural conditions of deformed material. The zone of thermal stability for copper of the two grades of interest does not depend on the material’s chemical composition.


Polymers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1557 ◽  
Author(s):  
Khaliq Majeed ◽  
Ashfaq Ahmed ◽  
Muhammad Saifullah Abu Bakar ◽  
Teuku Meurah Indra Mahlia ◽  
Naheed Saba ◽  
...  

In recent years, there has been considerable interest in the use of natural fibers as potential reinforcing fillers in polymer composites despite their hydrophilicity, which limits their widespread commercial application. The present study explored the fabrication of nanocomposites by melt mixing, using an internal mixer followed by a compression molding technique, and incorporating rice husk (RH) as a renewable natural filler, montmorillonite (MMT) nanoclay as water-resistant reinforcing nanoparticles, and polypropylene-grafted maleic anhydride (PP-g-MAH) as a compatibilizing agent. To correlate the effect of MMT delamination and MMT/RH dispersion in the composites, the mechanical and thermal properties of the composites were studied. XRD analysis revealed delamination of MMT platelets due to an increase in their interlayer spacing, and SEM micrographs indicated improved dispersion of the filler(s) from the use of compatibilizers. The mechanical properties were improved by the incorporation of MMT into the PP/RH system and the reinforcing effect was remarkable as a result of the use of compatibilizing agent. Prolonged water exposure of the prepared samples decreased their tensile and flexural properties. Interestingly, the maximum decrease was observed for PP/RH composites and the minimum was for MMT-reinforced and PP-g-MAH-compatibilized PP/RH composites. DSC results revealed an increase in crystallinity with the addition of filler(s), while the melting and crystallization temperatures remained unaltered. TGA revealed that MMT addition and its delamination in the composite systems improved the thermal stability of the developed nanocomposites. Overall, we conclude that MMT nanoclay is an effective water-resistant reinforcing nanoparticle that enhances the durability, mechanical properties, and thermal stability of composites.


e-Polymers ◽  
2011 ◽  
Vol 11 (1) ◽  
Author(s):  
Veronika Rabova ◽  
Petr Hron

AbstractThe effect of surface modified fillers based on montmorillonite on rheological and mechanical properties and thermal stability of high-molar mass polydimethylsiloxane matrix was evaluated. Silicone rubber/clay composites were prepared via homogenisation on open two roll-mill followed by torque measurement at two different temperatures. At 30 °C and 100 °C the torque did not extremely differ excepting the mixtures containing Cloisite 15A where it achieved the maximum at 3 phr montmorillonite content, but the tensile strength reached the similar values in all mixtures. Thermogravimetric analysis was utilized to find out the differences in weight decay of composites in silicone rubber/montmorillonite mixtures and in unfilled silicone rubber. Synergism of fillers was also studied and led to tensile strength increase.


2011 ◽  
Vol 12 (2) ◽  
pp. 131-144 ◽  
Author(s):  
Yusof Yusliza ◽  
Ahmad Zuraida

ABSTRACT : The effect of fiber content on mechanical properties and thermal stability of the cotton/albumen composites (CAC) were investigated and presented in this paper. The composites having 0%, 3%, 6%, 10%, 13 %, and 16% w/w of cotton fiber were considered.  Hands lay-up technique was used to prepare the CAC specimens and dried for 24 hours before characterised and evaluated for their mechanical performance. The structure and thermal stability of the composites were characterized by using x-ray and thermogravimetry analysis, respectively. The tensile strength and impact resistance of CAC are found maximum with the value of 8.7 MPa and 19.0 kJ/m2, respectively. Analysis on the morphological structure by SEM revealed that the mechanical properties of the composites depend on good wettability and adhesion between fiber/matrix.


Processes ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 588
Author(s):  
Lijie Huang ◽  
Hanyu Zhao ◽  
Hao Xu ◽  
Shuxiang An ◽  
Chunying Li ◽  
...  

Biomass materials have become a research focus for humankind, due to the decreasing availability of fossil fuels and the increasing release of greenhouse gas. In this work, we prepared biodegradable composites with waste cassava residues and polybutylene succinate (PBS) by modifying cassava residues using 4,4’-methylene diisocyanate phenyl ester (MDI) and tested their properties. The effects of MDI modification on the structure, mechanical properties, water absorption, microstructure, and thermal stability of the composites were studied via Fourier transform infrared spectroscopy, contact angle measurement, mechanical property testing, water absorption analysis, scanning electron microscopy, and thermogravimetric analysis, respectively. The results showed that the tensile strength and flexural strength of the material increased by 72% and 20.89%, respectively, when the MDI-modified cassava residue content was 30%. When 10% MDI-modified cassava residues were added, the tensile strength increased by 19.46% from 16.96 MPa to 20.26 MPa, while the bending strength did not change significantly. The water contact angle of the MDI-treated cassava residues exceeded 100°, indicating excellent hydrophobicity. Thus, MDI modification can significantly improve the mechanical properties and thermal stability of the biocomposite. The composites were immersed in distilled water for 96 h. The water absorption of the cassava residues/PBS composite was 2.19%, while that of the MDI-modified cassava residues/PBS composite was 1.6%; hence, the water absorption of the MDI-modified cassava residues/PBS composite was reduced to 26.94%. This technology has wide application potential in packaging, construction, and allied fields.


2019 ◽  
Vol 264 ◽  
pp. 02003
Author(s):  
Weizhou Yao ◽  
Jianan Yao ◽  
Qing Jiao ◽  
Yunhai Wei ◽  
Tianpeng Yu ◽  
...  

In order to increase the thermal stability and mechanical property of PPSU, two different polyimide (PI) short cut fibers reinforced polyphenyl sulfone (PPSU) composites were prepared by melt extrusion using a threescrew extruder. In addition, the effects of fiber lengths on thermal stability, heat resistance and mechanical properties of the composites was studied. The results indicate that the addition of polyimide chopped fiber can greatly improve the heat resistance of the composites. Comparing with PPSU, with the increasing of fiber content, the heat deformation temperature (HDT) of composites increased from 205 °C to 229 °C, but the addition of polyimide fiber has limited effect on the thermal stability of the composites. Meanwhile, the addition of polyimide chopped fiber can also improve the mechanical properties of the composites. Compared with PPSU, the tensile strength of composites can be increased by 102%, and the bending strength can be raised by 117%.


2011 ◽  
Vol 194-196 ◽  
pp. 484-487 ◽  
Author(s):  
Xian Zhong Mo ◽  
Chen Mo ◽  
Xiang Qi ◽  
Ren Huan Li

Biopolymer cassava starch(ST)-chitosan(CS)/montmorillonite(MMT) nanocomposites were prepared in which MMT was used as nanofiller and diluted acetic acid was used as solvent for dissolving and dispersing cassava starch, chitosan and MMT. XRD and TEM results indicated the formation of an exfoliated nanostructure of ST-CS/MMT nanocomposites. Mechanical properties testing revealed that at the range of the MMT content from 1wt% to 5wt%, tensile strength of the composites increased from 30MPa to 37.5MPa. But the elongation at break fall from 28% to 22% with the increasing of MMT. Obviously, MMT had an enforced effect to the composites. TGA results showed that the nano-dispersed MMT improved the thermal stability of the matrix systematically with the increasing of MMT.


2014 ◽  
Vol 912-914 ◽  
pp. 390-394 ◽  
Author(s):  
Yan Fang Zhao ◽  
Dan Liu ◽  
Shuang Quan Liao ◽  
Xiao Xue Liao ◽  
Sheng Bo Lin

The research on the mechanical properties and thermal stability of the natural rubber filled with different dosage of Zinc oxide (ZnO). The results showed that with the increase of the content of the ZnO, the tensile strength first increased, then decreased the, but the tear strength showed a trend of increase,the thermal stability had improved; When the amount of ZnO added was 9, damping performance was better.


2012 ◽  
Vol 488-489 ◽  
pp. 691-695
Author(s):  
Saowaroj Chuayjuljit ◽  
Thitima Rupunt

The focus of this study is to investigate the influences of ethylene octene copolymer (EOC) and carbon nanotubes (CNTs) on the mechanical properties (tensile and flexural properties) and thermal stability of polypropylene (PP)-based thermoplastic elastomer nanocomposites. The PP/EOC blends were prepared at two different weight ratios, 80/20 and 70/30 (w/w) PP/EOC, and each blend was compounded with a very low loading of CNTs (0.5-2 parts by weight per hundred of the PP/EOC resin). Both PP/EOC blends exhibited a higher elongation at break but a lower tensile strength, Young’s modulus and flexural strength as compared with those of the neat PP. However, the addition of CNTs caused a slightly change in the tensile strength and flexural strength but a more significant change in the Young’s modulus and elongation at break. The Young’s modulus and elongation at break of the PP/EOC blends were improved by filling with the appropriate loading of the CNTs. Thus, the combined use of EOC and CNTs can provide the balanced mechanical properties to the PP. Moreover, thermogravimetric analysis showed an improvement in the thermal stability of PP by the presence of both EOC and CNTs.


Sign in / Sign up

Export Citation Format

Share Document