Removal of Cr(VI) from Aqueous Solutions Using Clay from Calumbi Geological Formation, N. Sra. Socorro, SE State, Brazil

2018 ◽  
Vol 912 ◽  
pp. 1-6 ◽  
Author(s):  
J.C.T. Rezende ◽  
V.H.S. Ramos ◽  
H.A. Oliveira ◽  
Rosane Maria Pessoa Betânio Oliveira ◽  
E. Jesus

Conventional processes for heavy metal removal are costly. Natural and modified clay with quaternary ammonium salt were used as adsorbent for the removal of Cr (VI) from aqueous solutions. Clays were characterized using Fourier transform infrared spectroscopy FTIR, thermal analysis (TG/DTA) and X-ray diffraction (XRD). Cr (VI) determination was conducted by ultraviolet-visible spectrophotometry, using complexation with 1,5-diphenylcarbazide. Absorbance was measured at the wavelength of 540 nm. The experiments were conducted at 25 ± 1 °C; initial Cr (VI) concentration of 4 to 25 mg L-1; initial pH of 2, agitation of 150 rpm; contact time of 120 minutes and clay mass of 0.1 g. Natural and modified clays exhibited a maximum adsorption capacity of 2.548 mg g-1 and 17.24 mg g-1, respectively, in accordance with the Langmuir isotherm model. X-ray diffraction analysis of clay indicated that the sample consists mainly of kaolinite and montmorillonite.

2016 ◽  
Vol 104 (11) ◽  
Author(s):  
O. A. Elhefnawy ◽  
A. A. Elabd

AbstractMagnesium oxide immobilized polystyrene (PS/MgO) was prepared by the thermal attachment method for the removal of U(VI) from aqueous solutions. PS/MgO was characterized by different techniques [scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD)]. The effects of pH, adsorbent amount, contact time, initial U(VI) concentration, temperature and co-existing cations on the removal process were investigated by using batch technique. The results showed that the maximum adsorption capacity was 163 (mg g


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 814
Author(s):  
Nurliyana Ariffin ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Przemysław Postawa ◽  
Shayfull Zamree Abd Rahim ◽  
Mohd Remy Rozainy Mohd Arif Zainol ◽  
...  

This current work focuses on the synthesis of geopolymer-based adsorbent which uses kaolin as a source material, mixed with alkali solution consisting of 10 M NaOH and Na2SiO3 as well as aluminium powder as a foaming agent. The experimental range for the aluminium powder was between 0.6, 0.8, 1.0 and 1.2wt%. The structure, properties and characterization of the geopolymer were examined using X-Ray Diffraction (XRD), Infrared Spectroscopy (FTIR) and Scanning Electron Microscopy (SEM). Adsorption capacity and porosity were analysed based on various percentages of aluminium powder added. The results indicate that the use of aluminium powder exhibited a better pore size distribution and higher porosity, suggesting a better heavy metal removal. The maximum adsorption capacity of Cu2+ approached approximately 98%. The findings indicate that 0.8% aluminium powder was the optimal aluminium powder content for geopolymer adsorbent. The removal efficiency was affected by pH, adsorbent dosage and contact time. The optimum removal capacity of Cu2+ was obtained at pH 6 with 1.5 g geopolymer adsorbent and 4 h contact time. Therefore, it can be concluded that the increase in porosity increases the adsorption of Cu2+.


Materials ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 942 ◽  
Author(s):  
Huo-Xi Jin ◽  
Hong Xu ◽  
Nan Wang ◽  
Li-Ye Yang ◽  
Yang-Guang Wang ◽  
...  

The ability to remove toxic heavy metals, such as Pb(II), from the environment is an important objective from both human-health and ecological perspectives. Herein, we describe the fabrication of a novel carboxymethylcellulose-coated metal organic material (MOF-5–CMC) adsorbent that removed lead ions from aqueous solutions. The adsorption material was characterized by Fourier-transform infrared spectroscopy, X-ray diffractometry, scanning electron microscopy, and X-ray photoelectron spectroscopy. We studied the functions of the contact time, pH, the original concentration of the Pb(II) solution, and adsorption temperature on adsorption capacity. MOF-5–CMC beads exhibit good adsorption performance; the maximum adsorption capacity obtained from the Langmuir isotherm-model is 322.58 mg/g, and the adsorption equilibrium was reached in 120 min at a concentration of 300 mg/L. The adsorption kinetics is well described by pseudo-second-order kinetics, and the adsorption equilibrium data are well fitted to the Langmuir isotherm model (R2 = 0.988). Thermodynamics experiments indicate that the adsorption process is both spontaneous and endothermic. In addition, the adsorbent is reusable. We conclude that MOF-5–CMC is a good adsorbent that can be used to remove Pb(II) from aqueous solutions.


Polymers ◽  
2017 ◽  
Vol 9 (6) ◽  
pp. 201 ◽  
Author(s):  
Guojian Duan ◽  
Qiangqiang Zhong ◽  
Lei Bi ◽  
Liu Yang ◽  
Tonghuan Liu ◽  
...  

In this report, the β-CD(AN-co-AA) hydrogel was used to remove the thorium(IV) [Th(IV)] from the water system, and the new adsorbent was characterized through Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The influences of contact time, pH value, ionic strength, solid-liquid ratio, initial Th(IV) concentration, and temperature on Th(IV) adsorption onto the functional hydrogel were researched. The results showed that the experimental data followed the Langmuir isotherm and the maximum adsorption capacity (qmax) for Th(IV) was 692 mg/g at pH 2.95, which approached the calculated (qe) 682 mg/g. The desorption capacity of Th(IV) in different HNO3 concentrations ranging from 0.005 to 0.5 M was also studied, and the percentage of the maximum desorption was 86.85% in the condition of 0.09 M HNO3. The selectivity of β-CD(AN-co-AA) hydrogel was also be studied, the results indicated that this material retained the good adsorption capacity to Th(IV) even when the Ca2+, Mg2+, or Pb2+ existed in the system. The findings indicate that β-CD(AN-co-AA) can be used as a new candidate for the enrichment and separation of Th(IV), or its analogue actinides, from large-volume solution in practical application.


2015 ◽  
Vol 72 (6) ◽  
pp. 983-989 ◽  
Author(s):  
Zheng-ji Yi ◽  
Jun Yao ◽  
Yun-fei Kuang ◽  
Hui-lun Chen ◽  
Fei Wang ◽  
...  

The excessive discharge of Pb(II) into the environment has increasingly aroused great concern. Adsorption is considered as the most effective method for heavy metal removal. Chinese walnut shell activated carbon (CWSAC) was used as an adsorbent for the removal of Pb(II) from aqueous solution. Batch experiments were conducted by varying contact time, temperature, pH, adsorbent dose and initial Pb(II) concentration. Adsorption equilibrium was established within 150 min. Although temperature effect was insignificant, the Pb(II) adsorption was strongly pH dependent and the maximum removal was observed at pH 5.5. The Pb(II) removal efficiency increased with increasing CWSAC dosage up to 2.0 g/L and reached a maximum of 94.12%. Langmuir and Freundlich adsorption isotherms were employed to fit the adsorption data. The results suggested that the equilibrium data could be well described by the Langmuir isotherm model, with a maximum adsorption capacity of 81.96 mg/g. Adsorption kinetics data were fitted by pseudo-first- and pseudo-second-order models. The result indicated that the pseudo-first-order model best describes the adsorption kinetic data. In summary, CWSAC could be a promising material for the removal of Pb(II) from wastewater.


Separations ◽  
2021 ◽  
Vol 8 (11) ◽  
pp. 224
Author(s):  
Ismat H. Ali ◽  
Mutasem Z. Bani-Fwaz ◽  
Adel A. El-Zahhar ◽  
Riadh Marzouki ◽  
Mosbah Jemmali ◽  
...  

In this study, a gum Arabic-magnetite nanocomposite (GA/MNPs) was synthesized using the solution method. The prepared nanocomposite was characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), vibrating sample magnetometer (VSM), and thermogravimetric analysis (TGA). The prepared composite was evaluated for the adsorption of lead(II) ions from aqueous solutions. The controlling factors such as pH, contact time, adsorbent dose, initial ion concentration, and temperature were investigated. The optimum adsorption conditions were found to be 0.3 g/50 mL, pH = 6.00, and contact time of 30 min. The experimental data well fitted the pseudo-second-order kinetic model and the Langmuir isotherm model. The maximum adsorption capacity was determined as 50.5 mg/g. Thermodynamic parameters were calculated postulating an endothermic and spontaneous process and a physio-sorption pathway.


2019 ◽  

<p>This paper describes the adsorption of Al3+ ions from aqueous solutions, by natural clay (from Sakarya's Yenigün district) and coconut shell modified by means of acid treatment. Batch experiments were carried out to determine the effect of various factors such as initial pH (4-9), temperature (20, 40, 70 oC), initial concentration (10 to 200 mg L-1) and contact time (1-120 minute) on the adsorption process. The adsorption experiments were performed at a temperature of 20 ±2 oC), at 200 rpm agitation rate, with an adsorbent level of 1 g L-1, produced 98.95% (at pH 6) and 92.83% (at pH 7) maximum Al3+ removal efficiency for clay and coconut shell based adsorbents respectively. Furthermore, the process was found to be exothermic for clay and endothermic for coconut. XRF and XRD analyses of the clay variety used in adsorption analyses revealed it to be saponite clay, within the larger group of smectite clay minerals. The application of Langmuir revealed maximum adsorption capacity of 149.25 mg g-1 for natural clay adsorbent (NCA), and 120.482 mg g-1 for coconut shell adsorbent (CSA). Moreover, adsorption kinetics were found to be consistent with the second order kinetics (R2 &gt; 0.95). The result shows that, natural clay and coconut shell adsorbents are effective adsorbents to remove Al3+ from aqueous solutions with good adsorption rate (&gt;92.8%).</p>


2021 ◽  
Author(s):  
Changcheng Chen ◽  
Mina Luo ◽  
Fu Chen ◽  
Chao Huang ◽  
Chunmei Zhu ◽  
...  

Abstract Herein, we report the preparation of Fe(III) complexed polydopamine modified Mg/Al layered double hydroxides composite material (LDHs@PDA-Fe(III)) and its application to the removal of Cr(VI) in aqueous solution. LDHs@PDA-Fe(III) was characterized and analyzed by field-emission scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), Fourier transformed infrared (FTIR), X-ray diffraction (XRD), X-ray photoelectron (XPS). The adsorption performance was studied through a series of adsorption experiments. Under the influence of pH, time, temperature, concentration, the maximum adsorption capacity obtained in the experiment is 683.4 mg/g. In addition, after 5 adsorption cycles, LDHs@PDA-Fe(III) still shows excellent adsorption capacity and stability. Combining adsorption experiments and characterization analysis, it is inferred that the adsorption of Cr(VI) by LDHs@PDA-Fe(III) is the result of the synergistic effect of multiple adsorption mechanisms. Therefore, the efficient removal capacity and excellent stability make LDHs@PDA-Fe(III) an ideal adsorbent for removing Cr(VI) from aqueous solutions.


2013 ◽  
Vol 67 (11) ◽  
pp. 2444-2450 ◽  
Author(s):  
Mingdeng Liu ◽  
Qunhui Yuan ◽  
Hanzhong Jia ◽  
Shouzhu Li ◽  
Xiaohuan Wang ◽  
...  

In the present work, cysteine-modified orange peel (COP) for the removal of Cu(II) from aqueous solutions has been developed and comparatively studied with diethylenetriamine-modified orange peel (DOP). Both COP and DOP were systematically evaluated via their capabilities for adsorbing Cu(II), including the key influential parameters such as initial pH, contact time and initial Cu(II) concentration. Further studies suggest that the sorption of Cu(II) onto both COP and DOP fits well with the pseudo-second-order equation, and the corresponding sorption isotherm can be classified to a Langmuir isotherm model. COP appears more advantageous over DOP and far better than that of unmodified OP in removal of Cu(II) from aqueous system. The maximum capacities of COP and DOP for adsorbing Cu(II) are 95.23 and 83.68 mg/g, respectively, about three times higher than that of unmodified OP. The sorption efficiency of COP drops by merely about 3% after five cycles, implying a promising usage in the removal of Cu(II) from wastewater in practice.


2011 ◽  
Vol 64 (1) ◽  
pp. 286-292 ◽  
Author(s):  
Ruihua Huang ◽  
Dongsheng Zheng ◽  
Bingchao Yang ◽  
Bo Wang ◽  
Zengqiang Zhang

A novel type of adsorbent was prepared by modifying bentonite with N-2-hydroxypropyl trimethyl ammonium chloride chitosan (HACC) with cetyl trimethylammonium bromide (CTAB). The adsorbent was named CTAB-HACC bentonite. Its characteristics were investigated using thermogravimetric, Fourier-transform infrared spectroscopy (FTIR) and X-ray diffraction. The adsorption of phenol onto CTAB-HACC bentonite was evaluated by changing various parameters, such as contact time, adsorbent dosage, initial pH of the solution, and temperature. The maximum adsorption was observed at pH 12. Adsorption of phenol on CTAB-HACC bentonite favored at lower temperature and established the equilibrium in 30 min. The adsorption efficiency reached 82.1%, and the adsorption capacity was 7.12 mg/g from the phenol solution with a concentration of 500 mg/L at pH 12.0 and 20 °C.


Sign in / Sign up

Export Citation Format

Share Document