Microstructure and Mechanical Properties of AlN Particle Reinforced Mg-Al Matrix Composites with Different Particle Contents

2018 ◽  
Vol 913 ◽  
pp. 522-528 ◽  
Author(s):  
Yong Wang ◽  
Kai Ming Cheng ◽  
Ji Xue Zhou ◽  
Wei Hong Li ◽  
Jin Huan Xia

In this paper, magnesium matrix composite with different AlN particles content were fabricated by powder metallurgy. The microstructure of composites was investigated by scanning electron microscopy (SEM) equipped with energy dispersive spectrometer (EDS) and transmission electron microscopy (TEM). The mechanical properties of composites were measured by electronic universal testing machine. The results show that the best densification and the highest mechanical properties of composites reached when the addition of 6wt.% reinforcement at 620 °C for 1 hour. Additionally, the compressive strength and bending strength of composites were 217.06 MPa and 207.40 MPa respectively, increased by 79.2% and 91.12% compared with matrix alloy, and the reinforcement particles uniformly distributed in the matrix alloy. It may be concluded that the strengthening mechanism of composites is mainly attributed to grain refinement, load transfer, and dislocation strengthening.

2007 ◽  
Vol 336-338 ◽  
pp. 1383-1385 ◽  
Author(s):  
Chao Qin ◽  
Lian Jun Wang ◽  
Sheng Qiang Bai ◽  
Wan Jiang ◽  
Li Dong Chen

Ti5Si3-TiC-Ti3SiC2 composites containing different Ti3SiC2 volume fractions from 0 to 50% were in-situ fabricated by spark plasma sintering using Ti and SiC powders through adjusting the molar ratio of Ti to SiC. The morphologies of the fracture surfaces were analyzed by scanning electron microscopy (SEM). The room temperature mechanical properties of composites including hardness, bending strength and fracture toughness were tested.


2007 ◽  
Vol 348-349 ◽  
pp. 221-224 ◽  
Author(s):  
Wang Xiang ◽  
Guo Bing Ying

TiCp/ZA-12 composites have been fabricated by XDTM method and stirring-casting techniques. Microstructure of the composites has been studied by means of scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results show that TiC particles distribute uniformly in ZA-12 matrix alloy. The interface between reinforcements and matrix alloy is very clean, and there is not interface reaction between TiC particles and ZA-12 matrix alloy. The tests for mechanical properties reveal that the tensile strength, yield strength, elastic modulus and hardness of the composites are improved obviously due to the incorporation of TiC particles. The strengthening mechanisms are attributed to the following factors: dispersion strengthening of TiC particles, grain refinement of ZA-12 matrix alloy and high-density dislocations existing in ZA-12 alloy.


2015 ◽  
Vol 50 (1) ◽  
pp. 15-20 ◽  
Author(s):  
MJ Hossan ◽  
MA Gafur ◽  
MM Karim ◽  
AA Rana

In this study, hydroxyapatite (HAp) and gelatin (GEL) scaffolds were prepared to mimic the mineral and organic component of natural bone. The raw material was first compounded and resulting composite were molded into the petridishes. Using Solvent casting process, it is possible to produce scaffolds with mechanical and structural properties close to natural trabecular bone.The mechanical properties of composites were investigated by Thermo-mechanical analyzer (TMA), Vickers microhardness tester, Universal testing machine. It was observed that the composite has maximum tensile strength of 37.13MPa ( oven drying) and % elongation of 7.68 (Oven drying) and 2.04 (Natural drying) at 15% of Hap respectively. These results demonstrate that the prepared composite scaffold is a potential candidate for bone tissue engineering.Bangladesh J. Sci. Ind. Res. 50(1), 15-20, 2015


2020 ◽  
Vol 62 (7) ◽  
pp. 678-688
Author(s):  
X. Jiang ◽  
J. Chen ◽  
H. Sun ◽  
Z. Shao

Abstract High-entropy alloy composites were fabricated by ball milling, cold isostatic pressing and microwave sintering to which were added varied contents of Al2O3 whiskers, La-Ce, and carbon nanotubes-graphene, respectively. The structure and mechanical properties of the composites were investigated by X-ray diffraction, scanning electron microscopy and a microhardness tester. The high-entropy alloy and composites show amorphous phases and some crystalline phases. Accordingly, the addition of the reinforcement phase can refine the grain size. The formation mechanism of the phase is mainly related to the factors of mixing entropy, enthalpy, differences in atomic size, and the structure and property of the elements. The hardness of the composites is higher than that of the alloy (437.5 HV), and those composites reinforced by 0.5 wt.-% nanotubes- 0.5 wt.-% graphene are the highest (593.99 HV). The fracture morphology of the Al2O3 whisker reinforced composite shows a river pattern, indicating brittle cleavage. According to the research results, it can be concluded that the strengthening mechanism of the high entropy alloy composites mainly reflects fine grain strengthening and load transfer, and the toughening mechanism mainly crack bridging and a pulling out of the reinforcing phase.


Metals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1077 ◽  
Author(s):  
Dasari ◽  
Brabazon ◽  
Naher

Estimating the effect of graphene oxide (GO) reinforcement on overall properties of aluminum (Al) matrix composites experimentally is time-consuming and involves high manufacturing costs and sophisticated characterizations. An attempt was made in this paper to predict the mechanical properties of GO/Al composites by using a micromechanical finite element approach. The materials used for prediction included monolayer and multilayer GO layers distributed uniformly on the spherical Al matrix particles. The estimation was done by assuming that a representative volumetric element (RVE) represents the composite structure, and reinforcement and matrix were modeled as continuum. The load transfer between the GO reinforcement and Al was modeled using joint elements that connect the two materials. The numerical results from the finite element model were compared with Voigt model and experimental results from the GO/Al composites produced at optimized process parameters. A good agreement of numerical results with the theoretical models was noted. The load-bearing capacity of the Al matrix increased with the addition of GO layers, however, Young’s modulus of the GO/Al composites decreased with an increase in the number of layers from monolayer to 5 layers. The numerical results presented in this paper have demonstrated the applicability of the current approach for predicting the overall properties of composites.


Metals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 1084
Author(s):  
Dong Liang ◽  
Ning Wang ◽  
Yuxiang Wang ◽  
Zhenjie Liu ◽  
Ying Fu

In this paper, the microstructure and properties of as-cast Cu-Y-Zr alloys with different Zr content were studied in order to investigate whether the precipitates in copper alloys would interact with each other by adding Y and Zr simultaneously. As-cast Cu-0.5Y-xZr (wt.%, x = 0.05 and 0.1, nominal composition) alloys were prepared by vacuum melting in this study. Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), and transmission electron microscopy (TEM) were used to observe the microstructure of the alloys. The mechanical properties of the alloys were tested by universal material testing machine at room temperature. The effects of Zr content on the microstructure and mechanical properties of the alloys were explored. As shown by the research results, in the as-cast Cu-0.5Y-xZr (wt.%) alloys, the precipitated phase was the Cu5Y/Cu5Zr phase and ranged from 10 nm to 70 nm in size; when the Zr content increased from 0.05 wt.% to 0.1 wt.%, both the tensile strength and elongation rate of the alloys increased; when the Zr content was 0.1 wt.%, the tensile strength was 225 MPa and the elongation rate was 22.5%.


2020 ◽  
Vol 1006 ◽  
pp. 227-232
Author(s):  
Yuliya Danchenko ◽  
Artem Kariev ◽  
Vladimir Lebedev ◽  
Elena Barabash ◽  
Tatyana Obizhenko

The physic-mechanical properties of filled composites based on secondary polypropylene are investigated. As fillers the dispersed wastes of processing of agricultural plants - buckwheat and oat husk, as well as needles flour and wood flour were used. Water absorption, abrasion, impact strength and bending strength of composites were investigated. It has been proven that oat and buckwheat husks can be effectively used in composites based on secondary polypropylene and replace traditional wood fillers. It has been shown that the physic-chemical properties of the filled composites depend on the structure and physicochemical interactions on the phase separation surface, as well as on the surface properties of the filler particles. It is established that for the production of filled composites with improved physic-mechanical characteristics it is necessary to use fillers with small specific surface and concentration of surface functional groups, and the acid-base characteristic of the surface should be closer to neutral. It is shown that these conditions provide for the formation of a uniform structure of the filled composite with less internal stresses.


2012 ◽  
Vol 624 ◽  
pp. 279-282
Author(s):  
Feng Zhan ◽  
Nan Chun Chen

Talc was modified by aluminate coupling agent (ACA) before filling it into high density polypropylene (HDPP) to prepare talc/HDPP composites. Scanning electron microscopy (SEM), wear testing machine, electronic universal testing machine, and impact testing machine were used to analyze the surface modification and the effects of modified talc on friction and mechanical properties of modified talc/HDPP composites. The results indicate that after modified the lamellar structure of talc particles are open and the dispersion of particles are improved, and the edges and corners of surface become softer. Friction properties indicate that when the talc content is 8 wt%, both µ and K are at a lower value, which show that have better wear resistance. The frictional surface is relatively smooth and no furrow trace has found. Mechanical properties show that with talc content increasing, tensile strength and flexural strength of composites increase.


2014 ◽  
Vol 983 ◽  
pp. 94-98 ◽  
Author(s):  
Li Jun Wang ◽  
Jian Hui Qiu ◽  
Eiichi Sakai

The melting mixing was applied in the preparation of Multiwalled carbon nanotubes/Polycarbonate (MWCNTs/PC) nanocomposites. MWCNTs/PC nanocomposites with different MWCNTs contents were prepared under different injection conditions. The mechanical property of nanocomposites was comparatively investigated. The results demonstrated that: the tensile property of the nanocomposites was slightly improved by MWCNTs content increasing; but as the MWCNTs contents went on to increase to 10wt%, the tensile strength and bending strength were obviously decreased about 35% and 47%, respectively, but the impact strength and hardness were increased. The center hardness of MWCNTs/PC nanocomposites was greater than the surface hardness. Besides, the changes on the mechanical properties of the nanocomposites were studies by changing the injection conditions. By Scanning Electron Microscopy (SEM) observation, the microstructure and morphology of nanocomposites were analyzed, revealing that the center of the nanocomposite distributed more MWNTs, and the injection conditions would affect the MWNTs’ dispersion in the matrix and the interfacial interaction between MWCNTs and PC.


2010 ◽  
Vol 434-435 ◽  
pp. 601-604 ◽  
Author(s):  
W. Yang ◽  
Y. Jiang ◽  
G.P. Zhang ◽  
Y.S. Chao ◽  
Xiao Wu Li

A sort of biological shells (Saxidomus purpuratus), which belongs to Bivalve, was selected as the target material, and hardness and dynamic three point bending fatigue tests were conducted to examine its mechanical properties. Microhardness measurements showed that the inner layer is the hardest. The indentation on the specimen with a lower bending strength was damaged more seriously by the same load. Three point bending fatigue tests demonstrated that this kind of the shells with a special structure comprising mineral and organic matrix can experience the repeated loads instead of immediate breaking. The fatigue results on a single shell investigated here indicated that the fatigue strength is usually less than the static bending strength. Most of the fatigue lives of the specimens are less than 2105 cycles. In addition, fatigue fracture surfaces are observed by scanning electron microscopy.


Sign in / Sign up

Export Citation Format

Share Document