Study on Modified Hummers Method for Partially Oxidized Graphene Oxide Synthesis

2020 ◽  
Vol 981 ◽  
pp. 23-28
Author(s):  
Wan Sin Lim ◽  
Kwok Feng Chong

Graphene oxide (GO) is a promising material that currently a common precursor in the synthesis of graphene material. GO has emerged as a rapidly developed material due to its remarkable application in electronics, energy storage, biomedical and chemistry. However, controlling the oxygen content in the GO is one of the significant factors for tailoring GO that able to fulfil various applications. In this paper, diluted sulfuric acid was employed during the oxidation. Based on the characterization results from Fourier Transform Infrared Spectrometer (FTIR), Ultraviolet-visible spectroscopy (UV-Vis), X-ray diffraction (XRD) and Thermogravimetric analysis (TGA) it found that the partially oxidized graphene oxide (PGO) was fabricated. The PGO synthesis show an insignificant absorption of C=O peak in FTIR and weak peak intensity at 300 nm for UV-Vis analysis that found in fully oxidized graphene oxide. Therefore, the PGO synthesis claimed to be partially oxidized.

2018 ◽  
Vol 32 (19) ◽  
pp. 1840044
Author(s):  
Aditya Dalal ◽  
Animesh Mandal ◽  
Shubhada Adhi ◽  
Kiran Adhi

Aluminum (0.5 at.%)-doped ZnO (AZO) thin films were deposited by pulsed laser deposition technique (PLD) in oxygen ambient of 10[Formula: see text] Torr. The deposited thin films were characterized by x-ray diffraction (XRD), photoluminescence (PL), Raman spectroscopy and uv–visible spectroscopy (UV–vis). Next, graphene oxide (GO) was synthesized by Hummers method and was characterized by XRD, UV–vis spectroscopy, Raman spectroscopy and transmission electron microscopy (TEM). Thereafter, GO solution was drop-casted on AZO thin films. These films were then characterized by Raman Spectroscopy, UV–vis spectroscopy and PL. Attempt is being made to comprehend the modifications in properties brought about by integration.


NANO ◽  
2014 ◽  
Vol 09 (03) ◽  
pp. 1450037 ◽  
Author(s):  
XUEBING HU ◽  
YUN YU ◽  
JIANER ZHOU ◽  
LIXIN SONG

Graphene oxide (GO) has attracted much attention as a derivative of graphene. In addition, it appears to have many unique physicochemical properties and has been investigated widely in many areas. Herein, we prepare GOs using flake graphite (FG), expandable graphite (EG) and microcrystalline graphite (MG) as graphite precursors by the modified Hummers method. According to the X-ray diffraction (XRD), Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy, we characterize the component, the functional group, the chemical state of the element and the structural disorder of the obtained GOs to reveal their oxidation degree. Besides, we evaluate the hydrophilicity of the obtained GOs with the water contact angle, and observe their microstructures by transmission electron microscopy (TEM). We find that the GO prepared with EG has a higher-degree oxidation and better hydrophilicity, and it will be exfoliated easily and forms a monolayer or quasi-monolayer structure. Finally, based on the structural characteristic of graphite precursor, we build the intercalation and oxidation model to illuminate the phenomenon.


2016 ◽  
Vol 718 ◽  
pp. 81-86 ◽  
Author(s):  
Noppawan Pattanapisutkun ◽  
Chaiwat Prapainainar ◽  
Paisan Kongkachuichay ◽  
Paweena Prapainainar

The grafted materials of silaned-graphene oxide-mordenite (s-GO-MOR) were synthesized by grafting graphene oxide (GO) sheets to acid-treated mordenite and followed by functionalization with silane. GO sheets were prepared according to the modified Hummers method. 3-mercaptopropyltriethoxysilane (MPTES) was used as a silane coupling agent. The products were characterized by a Fourier transform infrared spectroscopy, X-ray diffraction, energy-dispersive X-ray spectroscopy and thermogravimetric analysis. The results confirmed the success of s-GO-MOR and showed excellent thermal stability.


2017 ◽  
Vol 75 (10) ◽  
pp. 2403-2411 ◽  
Author(s):  
Zongxue Yu ◽  
Qi Chen ◽  
Liang Lv ◽  
Yang Pan ◽  
Guangyong Zeng ◽  
...  

The environmental applications of graphene oxide and β-cyclodextrin (β-CD) have attracted great attention since their first discovery. Novel nanocomposites were successfully prepared by using an esterification reaction between β-cyclodextrin/γ-(2,3-epoxypropoxy) propyl trimethoxysilane grafted graphene oxide (β-CD/GPTMS/GO). The β-CD/GPTMS/GO nanocomposites were used to remove the Cu2+ from aqueous solutions. The characteristics of β-CD/GPTMS/GO were detected by scanning electron microscopy (SEM), Fourier transform infrared, X-ray diffraction (XRD), thermogravimetric analysis (TG) and energy dispersive X-ray (EDX). The dispersibility of graphene oxide was excellent due to the addition of β-CD. The adsorption isotherms data obtained at the optimum pH 7 were fitted by Langmuir isotherm model. The excellent adsorption properties of β-CD/GPTMS/GO for Cu2+ ions could be attributed to the apolar cavity structure of β-CD, the high surface area and abundant functional groups on the surface of GO. The adsorption patterns of β-CD/GPTMS/GO were electrostatic attraction, formation of host-guest inclusion complexes and the ion exchange adsorption. The efficient adsorption of β-CD/GPTMS/GO for Cu2+ ions suggested that these novel nanocomposites may be ideal candidates for removing other cation pollutants from waste water.


2021 ◽  
Vol 324 ◽  
pp. 87-93
Author(s):  
Mohamed Adel ◽  
Abdel Hady A. Abdel-Wahab ◽  
Ahmed Abdel-Mawgood ◽  
Ahmed Osman Egiza

Graphene oxide (GO) is an oxidized nanosheets of graphite with a 2D planar structure. GO could be readily complexed with bio-entities as it possesses many oxygen-containing functionalities on its surface. The preparation process is fast, easy, and cost-effective. It was prepared using modified Hummers’ method in acidic solution as a primary solvent and potassium permanganate as an oxidizing agent. Afterwards, it was successfully characterized by FTIR, UV-visible spectroscopy, as well as XRD and Raman spectroscopy, and finally, SEM analysis. It was observed that the formed GO is mainly composed of carbon and oxygen elements rich in oxygen functional groups. Furthermore, the existence of (001) plane in XRD interprets the complete oxidation of graphite with d-spacing 9 Å. Moreover, Raman spectroscopy displayed the sp3 carbon hybridization, besides, the ID/IG ratio is found to be 0.84, which confirms the disorder between graphene oxide layers. The SEM images also pointed out that graphene oxide sheets were regularly stacked together as flake-like structures. Accordingly, the richness of oxygen-containing functionalities was confirmed. Hence, it is appropriate to be used as a base transducer for biosensing applications.


2004 ◽  
Vol 37 (6) ◽  
pp. 901-910 ◽  
Author(s):  
C. Seitz ◽  
M. Weisser ◽  
M. Gomm ◽  
R. Hock ◽  
A. Magerl

A triple-axis diffractometer for high-energy X-ray diffraction is described. A 450 kV/4.5 kW stationary tungsten X-ray tube serves as the X-ray source. Normally, 220 reflections of thermally annealed Czochralski Si are employed for the monochromator and analyser. Their integrated reflectivity is about ten times higher than the ideal crystal value. With the same material as the sample, and working with the WKα line at 60 keV in symmetric Laue geometry for all axes, the full width at half-maximum (FWHM) values for the longitudinal and transversal resolution are 2.5 × 10−3and 1.1 × 10−4for ΔQ/Q, respectively, and the peak intensity for a non-dispersive setting is 3000 counts s−1. In particular, for a double-axis mode, an energy well above 100 keV from theBremsstrahlungspectrum can be used readily. High-energy X-rays are distinguished by a high penetration power and materials of several centimetre thickness can be analysed. The feasibility of performing experiments with massive sample environments is demonstrated.


2013 ◽  
Vol 785-786 ◽  
pp. 449-454
Author(s):  
Yan Zhao ◽  
Chun Yan Wu ◽  
Dan Qin ◽  
Xin Lai ◽  
Si Wu ◽  
...  

SrWO4 octahedrons, flowers, bundles, ellipsoids and dendrites had been successfully synthesized via surfactant-assisted method. The products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), photo-luminescent spectra techniques (PL) and fourier transrform infrared spectrometer (FTIR). By through various comparison experiments, it can be found that some related experimental parameters including the reagent concentration, [Sr2+]/[WO42-] molar ratio (R), aging temperature and the pH value had great influences on morphology of the products.


2013 ◽  
Vol 28 (2) ◽  
pp. 68-71 ◽  
Author(s):  
Thomas N. Blanton ◽  
Debasis Majumdar

In an effort to study an alternative approach to make graphene from graphene oxide (GO), exposure of GO to high-energy X-ray radiation has been performed. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and atomic force microscopy (AFM) have been used to characterize GO before and after irradiation. Results indicate that GO exposed to high-energy radiation is converted to an amorphous carbon phase that is conductive.


Author(s):  
B. Anandh ◽  
A. Muthuvel ◽  
M. Emayavaramban

The present investigation demonstrates the formation of silver nanoparticles by the reduction of the aqueous silver metal ions during exposure to the Lagenaria siceraria leaf extract. The synthesized AgNPs have characterized by UV-visible spectroscopy, X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) techniques. AgNPs formation has screened by UV-visible spectroscopy through colour conversion due to surface plasma resonance band at 427 nm. X-ray diffraction (XRD) confirmed that the resulting AgNPs are highly crystalline and the structure is face centered cubic (fcc). FT-IR spectrum indicates the presence of different functional groups present in the biomolecules capping the nanoparticles. Further, inhibitory activity of AgNPs and leaf extract were tested against human pathogens like gram-pastive (Staphylococcus aureus, Bacillus subtilis), gram-negative (Escherichia coli and Pseudomonas aeruginosa). The results indicated that the AgNPs showed moderate inhibitory actions against human pathogens than Lagenaria siceraria leaf extract, demonstrating its antimicrobial value against pathogenic diseases


2014 ◽  
Vol 609-610 ◽  
pp. 250-254
Author(s):  
Ya Bin Li ◽  
Jin Tian Huang ◽  
Yan Fei Pan

In the paper, the TiO2nanomaterials adopted the microcrystalline cellulose as the template by the template method and sol-gel method was prepared. Through the infrared spectrometer (FT-IR), scanning electron microscope (SEM), X-ray diffraction (XRD), the surface morphology, composition and the type of the samples were characterized respectively. The influence of the macro morphology of TiO2photocatalytic performance to use the reaction of decolorization and degradation of methyl orange as model was analyzed. The results showed that TiO2which was produced by the template of sallix fiber was Rod-shaped and the average diameter size of nanocomposite structure was 20.592 nm, which can provide a new method of producing other morphology of TiO2.


Sign in / Sign up

Export Citation Format

Share Document