Effects on the Bending Strength of Metal-Bonded Diamond Segments in DEM Simulation

2011 ◽  
Vol 175 ◽  
pp. 201-205 ◽  
Author(s):  
Xiu Yu Chen ◽  
Yi Qing Yu ◽  
Xi Peng Xu

An attempt was taken to simulate the bending strength of diamond impregnated segments in three point bending tests by using a discrete element method (DEM). The influences of main bond matrix components (Fe and Cu), the porosity in the matrix, the coefficient of friction among the matrix particles, and the connection strength between abrasive particles and matrix particles on the bending strength were investigated through simulation. It is found that the bending strength increases with the proportion of Fe but decreases with the increase of porosity. An increase in both the friction coefficient of the matrix particles and the bonding strength between the diamond grains and metal matrix particles can also lead to the increase of bending strength.

2013 ◽  
Vol 13 (2) ◽  
pp. 59-63 ◽  
Author(s):  
J.W. Kaczmar ◽  
K. Granat ◽  
K. Naplocha ◽  
A. Kurzawa ◽  
E. Grodzka ◽  
...  

Abstract Bending strength, thermal and electric conductivity and microstructure examinations of Cu based composite materials reinforced with Saffil alumina fibres are presented. Materials were produced by squeeze casting method applying the designed device and specially elaborated production parameters. Applying infiltration pressure of 90MPa and suitable temperature parameters provided manufacturing of copper based composite materials strengthened with Saffil alumina fibres characterized by the low rest porosity and good fibre-matrix interface. Three point bending tests at temperatures of 25, 100 and 300ºC were performed on specimens reinforced with 10, 15 and 20% of Saffil fibres. Introduced reinforcement effected on the relatively high bending strengths at elevated temperatures. In relation to unreinforced Cu casting strength of composite material Cu - 15vol.% Saffil fibres increase by about 25%, whereas at the highest applied test temperature of 300oC the improvement was almost 100%. Fibres by strengthening of the copper matrix and by transferring loads from the matrix reduce its plastic deformation and hinder the micro-crack developed during bending tests. Decreasing of thermal and electrical conductivity of Cu after incorporating fibres in the matrix are relatively small and these properties can be acceptable for electric and thermal applications.


2007 ◽  
Vol 353-358 ◽  
pp. 345-348
Author(s):  
Ki Woo Nam ◽  
B.G. Ahn ◽  
M.K. Kim ◽  
C.S. Son ◽  
Jin Wook Kim ◽  
...  

The optimized conditions of pressureless sintering were investigated in order to obtain the bending strength and the elastic wave signal of Al2O3 composite ceramics for textiles machinery. As sintering conditions, a temperature range from 1400°C to 1700°C and time from 30 minutes to 150 minutes were applied. Three-point bending tests were conducted on the sintered materials to obtain the strength property. From the test results, the optimum sintering condition was 1600°C, 100 minutes. Al2O3 composite ceramics showed that the elastic wave signal characteristics had a regular correlativity between the optimum sintering temperature and time as well as the maximum bending strength.


2012 ◽  
Vol 499 ◽  
pp. 229-234 ◽  
Author(s):  
Q. Pan ◽  
Wen Feng Ding ◽  
Jiu Hua Xu ◽  
B. Zhang ◽  
H.H. Su ◽  
...  

Alumina (Al2O3) bubble particles were added into the mixture of CBN abrasive grains, Cu-Sn-Ti alloy and graphite particles to prepare the composite blocks for porous CBN abrasive wheels. The specimens were sintered at the temperature of 920°C for the dwell time of 30 min. The bending strength of the composite blocks was measured by the three-point bending tests. The fracture surface of the blocks was characterized. The results show that, the content of alumina bubble particles does not take significant effect on the mechanical strength of the composite blocks. Even the lowest strength of the composite blocks, 98 MPa, is higher than that of the vitrified CBN abra-sive wheels. Cu-Sn-Ti alloy has bonded firmly alumina particles and CBN grains by means of the chemical reaction and corresponding products. Finally, the chip space was formed through the re-moval of the ceramic wall of the alumina bubble particles within the CBN abrasive wheel during dressing.


Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3158 ◽  
Author(s):  
Santiago Cano ◽  
Tanja Lube ◽  
Philipp Huber ◽  
Alberto Gallego ◽  
Juan Alfonso Naranjo ◽  
...  

The fused filament fabrication (FFF) of ceramics enables the additive manufacturing of components with complex geometries for many applications like tooling or prototyping. Nevertheless, due to the many factors involved in the process, it is difficult to separate the effect of the different parameters on the final properties of the FFF parts, which hinders the expansion of the technology. In this paper, the effect of the fill pattern used during FFF on the defects and the mechanical properties of zirconia components is evaluated. The zirconia-filled filaments were produced from scratch, characterized by different methods and used in the FFF of bending bars with infill orientations of 0°, ±45° and 90° with respect to the longest dimension of the specimens. Three-point bending tests were conducted on the specimens with the side in contact with the build platform under tensile loads. Next, the defects were identified with cuts in different sections. During the shaping by FFF, pores appeared inside the extruded roads due to binder degradation and or moisture evaporation. The changes in the fill pattern resulted in different types of porosity and defects in the first layer, with the latter leading to earlier fracture of the components. Due to these variations, the specimens with the 0° infill orientation had the lowest porosity and the highest bending strength, followed by the specimens with ±45° infill orientation and finally by those with 90° infill orientation.


2012 ◽  
Vol 450-451 ◽  
pp. 482-485 ◽  
Author(s):  
A Ying Zhang ◽  
Di Hong Li ◽  
Dong Xing Zhang

The effects of moisture content on the bending strength of T300/914 composite laminates that immersed in water for 7 days and 14 days was discussed in this paper. The three-point bending tests were conducted on the composite laminates. Experimental results reveal that the moisture content in the laminates increased with immersion time and that moisture absorption accelerated damage propagation in the composite laminates. The bending strength of the unaged, aged specimens were characterized and analyzed. Compared to the unaged specimens, the bending strength of the composite laminates immersed for 7 and 14 days decreased by 6.62% and 16.98%, respectively. The results revealed that the bending strength of the aged specimens decreased with the increasing immersion time.


2011 ◽  
Vol 332-334 ◽  
pp. 1468-1471 ◽  
Author(s):  
Can Can Cheng ◽  
Zhao Lin Liu ◽  
Li Fang Liu ◽  
Jian Yong Yu

Tapered 3D braided composites are prepared by column yarn-reduction technique, unit yarn-reduction technique and cutting, respectively. Bending properties in the tapered regions of the composites are obtained by three-point bending tests, and SEM photographs of the fracture surfaces are observed to analyze the failure mechanisms. Results show that bending modulus and bending strength of the yarn-reduction composites are significantly higher than those of the cut composites, and the unit yarn-reduction composites are slightly stronger than the column yarn-reduction composites. The saw-tooth propagation of matrix crackings and interfacial debondings are the primary failure mechanisms of the yarn-reduction composites, while yarn breakages and yarn pulling-outs are the main failure modes of the cut composites.


Author(s):  
Vahid Asghari ◽  
Abdolvahed Kami ◽  
Abbasali Bagheri

In this research, high-density polyethylene rods were joined together using rotary friction-welding. The effects of nanoparticle reinforcement and weld surface shape on the welded joint strength were investigated. To this aim, high-density polyethylene rods with a length of 50 mm and a diameter of 22 mm were machined, and three weld surface shapes, that is, flat, step, and conic shapes (on male and female counterparts), were created. The high-density polyethylene rods were rotary friction-welded with the addition of ZnO and SiO2 nanoparticles. The bending strength of rotary friction-welded rods was assessed by conduction of three-point bending tests. The results showed that both the weld surface shape and nanoparticles influence the bending strength of the welded joints. It was found that the step sample welds have higher bending strength (average bending depth and force of 6.27 mm and 2027.8 N, respectively). Furthermore, except for the case of flat samples, the addition of the reinforcement nanoparticles resulted in the improvement of the bending strength of the rotary friction-welded rods.


2007 ◽  
Vol 359-360 ◽  
pp. 15-18 ◽  
Author(s):  
Jing Lu ◽  
Yan Hui Wang ◽  
Jian Bing Zang ◽  
Shu Xian Shan

Fe-based metal bond has been widely used in fabricating diamond tools recently since the production cost could be greatly reduced for the low price of iron. However, graphitizing elements such as Fe, Co and Ni in the matrix catalyze the transformation of diamond to graphite during high temperature sintering process, which significantly decreases the tool’s efficiency and lifetime. In this paper, Si and Ti coating were coated on diamond grits by quasi atomic layer deposition (QALD) and vacuum slow vapor deposition (VSVD) separately not only to protect diamond from erosion but also to promote the adhesion between diamond grits and the bond. Three-point bending experiment was taken to measure the bending strength of Fe-Cu-Sn-Ni based metal bond diamond blade. In comparison with uncoated diamond blade, the bending strength of coated diamond blade improves dramatically. The theoretic calculation shows that the interface bonding strength between diamond and the metal bond increases by 181.68MPa owing to the Si coating. The effect of Si and Ti coating on interface bonding between diamond and the bond under different sintering temperatures was also illuminated.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Meng Zou ◽  
Jiafeng Song ◽  
Shucai Xu ◽  
Shengfu Liu ◽  
Zhiyong Chang

This study conducted quasistatic three-point bending tests to investigate the effect of bamboo node on the energy absorption, bending, and deformation characteristics of bamboo. Results showed that the node had a reinforcing effect on the energy absorption and bending strength of the bamboo culm subjected to bending load. The experimental results demonstrated that nodal samples (NS) significantly outperform internodal samples without node (INS). Under the three-point bending load, the main failure mode of bamboo is the fracture failure. The node also showed split and fracture prevention function obviously. Based on that, a series of bionic bumper beams were designed inspired by the bamboo node. The FEM results indicated that the performance of bionic bumpers was better than that of a normal bumper with regard to bending strength, energy absorption, and being lightweight. In particular, the bionic bumper beam has the best performance with regard to bending, energy absorption, and being lightweight compared with the normal bumper under pole impact. The characteristic of the bionic bumper beam is higher than that of the normal bumper beam by 12.3% for bending strength, 36.9% for EA, and 31.4% for SEA; moreover, there was a mass reduction of 4.9%, which still needs further optimization.


2013 ◽  
Vol 833 ◽  
pp. 266-270
Author(s):  
Chuan Sun ◽  
Yun Kai Li ◽  
Hu Wang ◽  
Ming Ming Wan ◽  
Yun Fei Wang ◽  
...  

Ceramics are widely used in every field of contemporary industrial because of its many excellent properties. However, its mechanical property is great brittleness and small toughness for the characteristics of internal chemical bond, which restricts its application range to a large extent. Therefore, how to improve mechanical properties of ceramic materials has been attracted a great attention in the relevant area. For ceramics using at room temperature, a method which can avoid brittle failure by metal confinement outside of ceramics is given. And the feasibility of this method is discussed. Three point bending tests were conduct on ZrO2 ceramics with and without lateral confinement separately. Base on the much of experimental conclusion, the bending strength of ceramic with lateral confinement was improved largely.


Sign in / Sign up

Export Citation Format

Share Document