The Correlations between Dynamic Interactions in Antiferromagnetic Multiferroics

2015 ◽  
Vol 233-234 ◽  
pp. 383-387 ◽  
Author(s):  
Muhamed Kh. Kharrasov ◽  
Ilgiz R. Kyzyrgulov ◽  
Ildus F. Sharafullin ◽  
Aidar G. Nugumanov

In this work we have researched the features of dynamic magnetoelectric and magnetoelastic interactions in multiferroic crystal, influenced by various external fields, with the group of symmetry . Based on the integrated approach, which combines N. N. Bogolyubov’s quantum-statistic methods, Green’s temperature functions, diagram technique and symmetry, energy spectrum’s and static spin susceptibility’s dependences on the temperature and external fields were calculated. The effective parameters of magnetoelectric and magnetoelastic interactions dependences on the external fields’ intesities were analysed. It is shown that these parameters have a distinct maximum in the resonance value. As was shown, it is possible to enhance the interactions between spins, ferroelectric and fonons subsystems in multiferroics by applicating the external fields in different crystallographic directions.

2011 ◽  
Vol 223 ◽  
pp. 505-513 ◽  
Author(s):  
Wit Grzesik ◽  
Sebastian Brol

This paper proposes a novel integrated approach to the prediction of surface generation mechanisms which takes into account both cutting process outputs and distortions of the individual feed marks in comparison to an ideal kinematical model. For this task, the recorded surface roughness profile was decomposed using special algorithms. The mechanisms of real surface generation considered include the plastic side flow and spring back effects, the cutting edge sharpness and its wear, and dynamic interactions between the tool and the workpiece. The computation procedure was verified for different workpiece materials in conjunction with uncoated and coated, sharp and worn, tools.


1998 ◽  
Vol 37 (1) ◽  
pp. 341-346 ◽  
Author(s):  
A. Pfister ◽  
A. Stein ◽  
S. Schlegel ◽  
B. Teichgräber

Since treatment plants have been built all over Germany during the last decades, the water quality of receiving streams has been improved remarkably. But there are still a lot of quality problems left, which are caused e.g. by combined sewer overflows (CSO), treatment plant effluents or rainwater discharges from separate sewer systems. At present different efforts are undertaken to control sewer systems in order to improve the operation of urban drainage systems or more generally, design processes. The Emschergenossenschaft and Lippeverband (EG/LV) are carrying out research studies, which are focusing on a minimization of total emissions from sewer systems both from wastewater treatment plant (WWTP) effluents and from CSO. They consider dynamic interactions between rainfall, resultant wastewater, combined sewers, WWTP and receiving streams. Therefore, in an advanced wastewater treatment, a model-based improvement of WWTP operation becomes more and more essential, and consequently a highly qualified operational staff is needed. Some aspects of the current research studies are presented in this report. The need and the use of an integrated approach to combine existing model components in order to optimize dynamic management of combined sewer systems (CSS) with a benefit for nature are outlined.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Alessandro Pagano ◽  
Irene Pluchinotta ◽  
Raffaele Giordano ◽  
Umberto Fratino

Cities are highly dynamic systems, whose resilience is affected by the interconnectedness between “hard” and “soft” infrastructures. “Hard infrastructures” are the functional networks with physical elements providing goods or services. “Soft infrastructures” (culture, governance, and social patterns) encompass the social networks, make the hard infrastructures work, and are vital for understanding the consequences of disasters and the effectiveness of emergency management. Although the dynamic interactions between such infrastructures are highly complex in the case of the occurrence of hazardous events, it is fundamental to analyze them. The reliability of hard infrastructures during emergency management contributes to keep alive the social capital, while the community, its networks, and its own resilience influence the service provided by infrastructural systems. Resilience-thinking frameworks overcome the limits of the traditional engineering-oriented approaches, accounting for complexity of socio-technical-organizational networks, bridging the static and dynamic components of disasters across pre- and postevent contexts. The present work develops an integrated approach to operatively assess resilience for the hard and soft infrastructural systems, aiming at modeling the complexity of their interaction by adopting a graph theory-based approach and social network analysis. The developed approach has been experimentally implemented for assessing the integrated resilience of the hard/soft infrastructures during the L’Aquila 2009 earthquake.


Author(s):  
Saeed Behbahani ◽  
Clarence W. de Silva

Modeling, identification (experimental modeling), and design of dynamic systems and the associated problem of controller design are common problems in the field of mechatronics. A typical mechatronic problem entails finding the best topology as well as parameter values of the desired solution. In view of dynamic interactions in a mechatronic system, which involves more than one domain, it is desirable to use concurrent and integrated methodology in the solution. The powerful search ability of genetic programming (GP) along with the domain independence and the open architecture of bond graph (BG) modeling can be integrated to develop an evolutionary mechatronic tool for identification of a complex mechatronic system. This paper extends this integrated approach to nonlinear mechatronic problems and develops a software tool for this purpose. It is illustrated how the developed technique and the corresponding software tool can be used in the automated synthesis and identification of a nonlinear mechatronic system. The performance of the software tool is validated by applying it to a nonlinear electrohydraulic manipulator, which falls into the class of multidomain systems. The results obtained from the application are quite encouraging, and form a rationale for the extension of the tool for concurrent and optimal design of mechatronic systems.


Author(s):  
GRAHAM COATES ◽  
ALEX H.B. DUFFY ◽  
IAN WHITFIELD ◽  
WILLIAM HILLS

Within the engineering design community there is support for further research into the development of improved approaches to design management. Such research has lead to coordination being identified as an important and pervasive characteristic of many existing approaches (e.g., concurrent engineering and work-flow management). In this article, operational design coordination is proposed as the basis for an improved approach. This article also presents a novel integrated approach that incorporates the key elements of operational design coordination: coherence, communication, task management, resource management, schedule management, and real-time support. Through unifying these key elements, this approach provides an integrated means of managing design in a controlled and harmonious fashion. The approach also provides knowledge of the constituent techniques involved in operational design coordination, the interrelationships and dynamic interactions between them, and the knowledge used and maintained within and between them. The approach has been realized within an agent-oriented system called the Design Coordination System, which provides a systematic means of simultaneously coordinating operational management tasks and technical design tasks. To evaluate the approach, the system has been applied to an industrial case study involving the computational process of turbine blade design. This application has been shown to enable the structured undertaking of interrelated tasks by allocating and using resources of varying performance efficiency in an optimized fashion in accordance with dynamically derived schedules in a coherent, appropriate, and timely manner. This is achieved by managing tasks, their dependencies, and the information required to undertake them. In addition, the approach enables and sustains the continuous optimized use of resources by monitoring, forecasting, and disseminating resource performance efficiency. The approach facilitates dynamic scheduling and the subsequent enactment of the resulting schedules. Decision making for rescheduling is also incorporated within the approach such that it is only performed as and when appropriate. If rescheduling is performed, it is done so in parallel with task enactment such that resources continue to be utilized in an optimized manner.


2015 ◽  
Vol 112 (38) ◽  
pp. E5351-E5360 ◽  
Author(s):  
Weizhe Hong ◽  
Ann Kennedy ◽  
Xavier P. Burgos-Artizzu ◽  
Moriel Zelikowsky ◽  
Santiago G. Navonne ◽  
...  

A lack of automated, quantitative, and accurate assessment of social behaviors in mammalian animal models has limited progress toward understanding mechanisms underlying social interactions and their disorders such as autism. Here we present a new integrated hardware and software system that combines video tracking, depth sensing, and machine learning for automatic detection and quantification of social behaviors involving close and dynamic interactions between two mice of different coat colors in their home cage. We designed a hardware setup that integrates traditional video cameras with a depth camera, developed computer vision tools to extract the body “pose” of individual animals in a social context, and used a supervised learning algorithm to classify several well-described social behaviors. We validated the robustness of the automated classifiers in various experimental settings and used them to examine how genetic background, such as that of Black and Tan Brachyury (BTBR) mice (a previously reported autism model), influences social behavior. Our integrated approach allows for rapid, automated measurement of social behaviors across diverse experimental designs and also affords the ability to develop new, objective behavioral metrics.


Buildings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 269
Author(s):  
Sergio Lagomarsino ◽  
Stefania Degli Abbati ◽  
Daria Ottonelli ◽  
Serena Cattari

This study investigated seismic assessments of the Podestà Palace in Mantua (Italy). This masonry palace has a complex geometrical configuration that resulted from the addition of various units stratified over centuries. This feature makes seismic assessment challenging from a modelling perspective due to the interaction among units. Here, an integrated use of three modelling strategies characterised by a different computational effort and degree of accuracy was employed: (i) the Structural Element Model, according to the Equivalent Frame Approach, to study the global response of the whole structure and to estimate the mutual dynamic interactions among units; (ii) the Macro-Block Model, to assess the out-of-plane response of facades prone to the activation of local mechanisms; and (iii) the Finite Element Model, to deepen the seismic response of some critical parts, highlighted by a global analysis but also roughly described by the Equivalent Frame Model. This integrated approach consists in the use of results achieved from one modelling approach as input for another. For example, the floor spectra estimated by (i) were used to define the seismic input in (ii); for assessing the most critical portions, more accurate models were addressed (as in case (iii)). The comprehensive interpretation of the seismic behaviour obtained by these models also allowed us to address more rationally possible strengthening solutions, such as the in-plane stiffening of vaults (particularly spread in the building), aimed to guarantee a better redistribution of seismic actions in such a complex building.


Author(s):  
Conly L. Rieder

The behavior of many cellular components, and their dynamic interactions, can be characterized in the living cell with considerable spatial and temporal resolution by video-enhanced light microscopy (video-LM). Indeed, under the appropriate conditions video-LM can be used to determine the real-time behavior of organelles ≤ 25-nm in diameter (e.g., individual microtubules—see). However, when pushed to its limit the structures and components observed within the cell by video-LM cannot be resolved nor necessarily even identified, only detected. Positive identification and a quantitative analysis often requires the corresponding electron microcopy (EM).


Sign in / Sign up

Export Citation Format

Share Document