Effect of Processing Parameters of Hydrophobic Film on Ceramic Tile

2017 ◽  
Vol 263 ◽  
pp. 97-102
Author(s):  
Prapatsorn Prathungthai ◽  
Sutham Srilomsak ◽  
Wimonlak Sutapun ◽  
Sukasem Watcharamaisakul ◽  
Lada Punsukumtana

In this research study the fabricated of hydrophobic of SiO2 nanoparticles was modified with tetraethylorthosilicate (TEOS), poly-(dimethylsiloxane) (PDMS) and methyltriethoxysilane (MTES) by using a sol-gel method. The effects of precursors, coating techniques and curing conditions were investigated. A water contact angle (WCA) measurement done using a sessile drop method with an optical contact measuring apparatus. Morphologies of the hydrophobic films were depicted using scanning electron microscopy (SEM). All data were analyzed using Design Expert® software. Results shown that a morphology of hydrophobic films had nanoroughness as evidenced by high contact angle. The largest predicted WCA of these is 150.306 degrees, which will be obtained with a TEOS:SiO2:PDMS:MTES ratio equal to 7.00:3.374:2.75:3.00 wt.% respectively. It is coated using a dipping technique and oven cured at 400°C.

2020 ◽  
Vol 20 (3) ◽  
pp. 1780-1789 ◽  
Author(s):  
Priyanka Katiyar ◽  
Shraddha Mishra ◽  
Anurag Srivastava ◽  
N. Eswara Prasad

TiO2, SiO2 and their hybrid nanocoatings are prepared on inherent flame retardant textile substrates from titanium(IV)iso-proproxide (TTIP) and tetraethoxysilane (TEOS) precursors using a sol–gel process followed by hydrothermal treatment. The coated samples are further functionalized by hexadecyltrimethoxysilane (HDTMS) to impart superhydrophobicity. Sample characterization of the nanosols, nanoparticles and coated samples are investigated using, X-ray diffractometer, transmission electron microscopy, scanning electron microscopy, UV-Vis spectroscopy, contact angle measurement. Stain degradation test under mild UV irradiation shows almost 54% degradation of coffee stain within 4 hours measured by Spectrophotometer. UV-Vis Absorption Spectroscopy demonstrates complete degradation of methyl orange colorant within 3 hours. Hybrid nanosol coated and HDTMS modified inherent flame retardant polyester surfaces show apparent water contact angle as ~145°, which is much closer to proximity of superhydrophobic surfaces. Thus, the novelty of present work is, by using sol–gel technique, a bi-functional textile surface has been developed which qualifies the very specific requirements of protective clothing like self-cleaning property (imparted by TiO2 nanoparticles) and superhydrophobicity (imparted by SiO2 nanoparticles and further surface modification by HDTMS), which are entirely contradictory in nature, in a single fabric itself. Thus developed textile surfaces also possess the other attributes of protective clothing like flame retardancy and air permeability.


Soft Matter ◽  
2021 ◽  
Author(s):  
Jixi Zhang ◽  
Ligui Zhang ◽  
Xiao Gong

In this work, we prepare a PDMS-SiO2-PDA@fabric with high water contact angle (WCA=155o). Combining dopamine self-polymerization and sol-gel method, SiO2 is in situ grown on a PDA-modified fabric surface to...


2017 ◽  
Vol 7 ◽  
pp. 184798041770279 ◽  
Author(s):  
Baojiang Liu ◽  
Taizhou Tian ◽  
Jinlong Yao ◽  
Changgen Huang ◽  
Wenjun Tang ◽  
...  

A robust superhydrophobic organosilica sol-gel-based coating on a cotton fabric substrate was successfully fabricated via a cost-effective one-step method. The coating was prepared by modification of silica nanoparticles with siloxane having long alkyl chain that allow to reduce surface energy. The coating on cotton fabric exhibited water contact angle of 151.6°. The surface morphology was evaluated by scanning electron microscopy, and surface chemical composition was measured with X-ray photoelectron spectroscopy. Results showed the enhanced superhydrophobicity that was attributed to the synergistic effect of roughness created by the random distribution of silica nanoparticles and the low surface energy imparted of long-chain alkane siloxane. In addition, the coating also showed excellent durability against washing treatments. Even after washed for 30 times, the specimen still had a water contact angle of 130°, indicating an obvious water-repellent property. With this outstanding property, the robust superhydrophobic coating exhibited a prospective application in textiles and plastics.


Crystals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 31
Author(s):  
Ratnawulan Ratnawulan ◽  
Ramli Ramli ◽  
Ahmad Fauzi ◽  
Sukma Hayati AE

This study reports on the synthesis, characterization of polystyrene(PS)/CuO-Fe2O3 nanocomposites, and their application as hydrophobic coatings. CuO and Fe2O3 materials were synthesized from natural materials by the milling method. Meanwhile, the PS/CuO-Fe2O3 nanocomposites were synthesized by the sol-gel method. Furthermore, the hydrophobic coating on the glass substrate was made by the spin-coating. To obtain highest value of contact angle, the composition of both CuO and Fe2O3 in nanocomposite as well as calcination temperatures were varied. Sample characterization was conducted using X-ray diffraction (XRD), scanning electron microscopy (SEM), and ultraviolet visible (Uv-Vis) spectrophotometry analysis. The Sessile drop method was used to determine the contact angle of the layer. The results showed that PS/CuO-Fe2O3 nanocomposite was successfully obtained with a crystal size between 40–52 nm and grain size of 92 nm. In addition to the basic material of composites, hematite and tenorite, the presence of copper ferrite phase was also identified. The CuO-Fe2O3 composition and its large calcination temperature also plays an effective role in the magnitude of the contact angle. The highest value of contact angle obtained was 125.46° at 3:1 composition and calcination temperature of 200 °C. We found that the PS/CuO-Fe2O3 composite was hydrophobic, but the photocatalyst activity was very small at 0.24%.


2013 ◽  
Vol 663 ◽  
pp. 377-380 ◽  
Author(s):  
Wen Juan Gu ◽  
Ying Li ◽  
Bang Gui He

A new kind of microsphere filler was synthesized with octyltrimethoxysilane (WD13) and tetraethoxysilane (TEOS) by sol-gel method. The morphology of the filler was measured by TEM. The so synthesized spheres were added into the silicone rubber. Both the strain-stress and the water contact angle of the silicone rubber were researched. The results showed that both the mechanical property and the hydrophobic performance of the composite were improved compared with the blank specimen. The possible strengthen mechanism of the filler was discussed. The neotype silica sphere researched in this paper could react with the silicone rubber chains which perfects the vulcanization of the silicone rubber. This kind of sphere filler exhibits many merits for usage as filler.


Author(s):  
Sorna Gowri Vijaya Kumar ◽  
◽  
Priyanka Prabhakar ◽  
Raj Kumar Sen ◽  
Neha Uppal ◽  
...  

Nanoflower is anticipated to become a very smart material due to its unique properties such as high surface to volume ratio. A hydrothermal method was used in this study to prepare the zinc oxide (ZnO) nanoflower and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). The average particle size of the ZnO nanoflower was calculated as 21nm according to the Debye-Scherrer formula. The SEM result gives the surface morphological information of the ZnO nanoflower, which confirms the formation of the ZnO nanoflower. The ZnO nanoflower was dispersed in PDMS and coated onto cotton fabric to get the superhydrophobic fabric. The hydrophobicity was determined by measuring the water contact angle by the Sessile drop method and it was observed that coated fabrics have the highest contact angle, 140⁰ at 0.5% ZnO nanoflower concentration. The present study offers a method of fabrication of superhydrophobic cotton textile using ZnO nanoflower/PDMS polymer nanocomposites.


2020 ◽  
Vol 8 (3) ◽  
Author(s):  
Moataz Abdulhafez ◽  
Angela J. McComb ◽  
Mostafa Bedewy

Abstract The growth of laser-induced nanocarbons, referred to here as laser-induced nanocarbon (LINC) for short, directly on polymeric surfaces is a promising route toward surface engineering of commercial polymers. This paper aims to demonstrate how this new approach can enable achieving varied surface properties based on tuning the nanostructured morphology of the formed graphitic material on commercial polyimide (Kapton) films. We elucidate the effects of tuning laser processing parameters on the achieved nanoscale morphology and the resulting surface hydrophobicity or hydrophilicity. Our results show that by varying lasing power, rastering speed, laser spot size, and line-to-line gap sizes, a wide range of water contact angles are possible, i.e., from below 20 deg to above 110 deg. Combining water contact angle measurements from an optical tensiometer with LINC surface characterization using optical microscopy, electron microscopy, and Raman spectroscopy enables building the process–structur–property relationship. Our findings reveal that both the value of contact angle and the anisotropic wetting behavior of LINC on polyimide are dependent on their hierarchical surface nanostructure which ranges from isotropic nanoporous morphology to fibrous morphology. Results also show that increasing gap sizes lead to an increase in contact angles and thus an increase in the hydrophobicity of the surface. Hence, our work highlight the potential of this approach for manufacturing flexible devices with tailored surfaces.


2018 ◽  
Vol 162 ◽  
pp. 05006 ◽  
Author(s):  
Adawiya Haider ◽  
Riyad Al-Anbari ◽  
Ghadah Kadhim ◽  
Zainab Jameel

In the present work, titanium dioxide (TiO2) nanoparticles (NP’s) were prepared using sol-gel process from Titanium Tetrachloride (TiCl4) as a precursor with calcinations at two temperatures (500 and 900) °C. The effect of calcinations temperatures on the structural, optical, morphological and Root Mean Square (roughness) properties were investigated by means of Scanning Electron Microscopy, X-ray Diffraction (XRD), and Atomic Force Microscopy (AFM). Bacterial inactivation was evaluated using TiO2-coated Petri dishes. A thin layer of photocatalytic TiO2 powder was deposited on glass substrate in order to investigate the self-cleaning effect of TiO2 nanoparticles in indoor and outdoor applications. Ultra-hydrophilicity was assessed by measuring the contact angle and it evaluated photolysis properties through the degradation of potassium permanganate (KMnO4) under direct sunlight. XRD analysis indicated that the structure of TiO2 was anatase at 500 °C and rutile at 900 °C calcination temperatures. As the calcination temperature increases, the crystallinity is improved and the crystallite size becomes larger. Coated films of TiO2 made the has permeability, low water contact angle and good optical activity. These are properties essential for the application of the surface of the self-cleaning. The final results illustrate that titanium dioxide can be used in the build materials to produce coated surfaces in order to minimize air pollutants that are placed in microbiologically sensitive circumference like hospitals and the food factory.


2012 ◽  
Vol 496 ◽  
pp. 511-514
Author(s):  
Wei Xu ◽  
Li Fen Hao

Novel anionic fluorinated polyacrylate emulsion (FLHA) was synthesized and characterized using Infrared spectrum (IR). Then it was used as waterproofing agent to treat wet blue leather and the effects of various parameters, such as dose of fluorinated acrylate emulsion, processing time, temperature, etc., on hydrophobic property of the treated crust leather were also investigated using single factor experimental method. Results showed that water contact angle (WCA) on the grain and flesh layers of the resultant leather had similar rule controled by dose of the FLHA, processing time and temperature and increased with augment of those factors. The most preferable processing parameters of the above factors were 6% (based on the weight of the treated wet blue leather), 60 minutes and 30 °C, repectively. Thus, WCA on the grain and flesh layers of the resultant leather could attain 130° and 136°.


2005 ◽  
Vol 901 ◽  
Author(s):  
Phani Ratna Ayalasomayajula ◽  
S. Santucci

AbstractDevelopment of UV blocking thin films with effective cut-off features with steep edges and high transmission in the visible and IR region have been developed. The unique optical, mechanical and chemical properties of silica and ceria nanocomposites with surface functional groups making them most promising candidate for applications in opto-electronic, automotive, and aeronautic industries. On the other hand, highly hydro and oleophobic films are being actively considered in optical, automotive and aeronautic industries to increase adhesion and scratch, abrasion resistance properties. In order to fill the gap, and fulfill the requirements to meet both ends, it could be proved that morphological changes in the nanometer range influences the water contact angles and their hystersis of low energy materials. Nanocomposite films of SiO2 and CeO2 with surface functionalisation with decafluorooctly-triethoxy silane itself forms nano-hemispheres (similar to lotus leaf) at and above 100°C favoring an increase in water contact angle from 122° (25°C) to 145°(400°C). The structural, optical, and hydrophobic properties have been examined by employing X-ray diffraction, UV-visible spectroscopy, contact angle techniques, respectively. The cut-off behavior of the deposited and annealed nanocomposite thin films have been tuned by varying different amounts of CeO2 in SiO2.


Sign in / Sign up

Export Citation Format

Share Document