The Influence of Technological Parameters on Drawing Force at Cold Drawing of Steel Tubes Using FEM Simulation

2019 ◽  
Vol 294 ◽  
pp. 124-128
Author(s):  
Mária Kapustová ◽  
Róbert Sobota ◽  
Martin Necpal

The process of cold die drawing of tubes is ranked among frequently used methods of production of seamless tubes and is performed in drawing tool which is characterized by simple design. Shape and dimensions of the drawing tool depend on tube reduction degree, i. e. on original diameter of initial tube and final internal diameter of the tube. Tube wall thickness is not determined by any tool. The technology of cold die drawing of tubes is influenced by various process parameters, i.e. geometry of the die itself, strain degree and strain rate, force conditions, conditions of friction, method of lubrication and the type of used lubricant. The contribution is concerned with evaluation of influence of the selected process parameters using FEM simulation. Designed graphs illustrate the impact of coefficient of friction and reduction cone of drawing tool on the size of drawing force.

2019 ◽  
Vol 952 ◽  
pp. 235-242
Author(s):  
Mária Kapustová ◽  
Róbert Sobota

The technology of cold die drawing of tubes is used for processing of metals and alloys with good or worse formability, while the tube production itself is affected by various process parameters, i. e. mostly die geometry, strain degree and strain rate, force conditions, conditions of friction, method of lubrication and type of used lubricant. The paper is concerned with an evaluation of influence of the selected process parameters, i. e. drawing tool geometry and strain rate on plastic flow and energy intensity of the process of cold die drawing of tubes. The FEM analysis of the drawing process was an important aid for this research. The computer simulation resulted in interesting graphs illustrating the influence of the shape of the drawing tool reduction cone on the size of the drawing force at various strain rates.


2020 ◽  
Vol 304 ◽  
pp. 121-125
Author(s):  
Martin Necpal ◽  
Mária Kapustová ◽  
Maroš Martinkovič

The most comprehensive steel tube portfolio is used to produce all kinds of modern energy production and the corresponding auxiliary unit such as boilers and heat exchangers. Multi-rifled seamless steel tubes are distinguished by maximum pressure, heat resistance, strength and durability. Production of multi-rifled seamless steel tubes by cold draw process using multi-rifled mandrel is quite a new technology. Shape and dimension of the drawing tool depend on drawing tube reduction degree, i. e. on the original diameter of the initial tube and final diameter of the tube. The technology of drawing tubes is influenced by process parameters, dimensions of tools and cold forming process conditions. Optimization of the whole forming process naturally involve the FEM analyses and simulation. One of the most important information of the cold drawing process is the load stroke of the tools. The contribution is concerned at the usability of FEM simulation on an evaluation of cold draw forming process condition and prediction of load stroke of the forming tools. DEFORM 2D/3D FEM software is used to compare the result of the drawing force and to determine the appropriate methodology to set FEM simulation of cold forming.


Author(s):  
С. В. Пристинський ◽  
Ю. О. Будаш ◽  
В. І. Ступа ◽  
І. О. Пустовойт

Comparative analysis the main parameters of injection molding and the physic-mechanicals properties of polymer compositions based on polyamide 6.6. Samples we had obtained by injection molding method at injection molding machine ENGEL E-MAC 170/75. The process parameters had determined empirically to achieve certain quality criteria. Physics and mechanicals properties had evaluated by Sharpy impact strength. Statistical data processing, construction of graphs and diagrams had done in MS Excel. During the researching, had done a comparative analysis of the main parameters of the injection molding process, physical and mechanical properties, such as impact strength of the samples obtained from the glass-filled polymer composition based on polyamide PA6.6-GFGB30 and the material without glass filler PA6.6. During the experiment and data, analysis had revealed an increase in the impact strength of samples by 43%, cast from polymeric composition material PA6.6-GFGB30 in comparison with PA6.6. At the same time the process parameters such as the temperature, which directly affects the energy resources consumption, did not receive statistically significant changes. Among the features of changes in process parameters, we can note an increase in switching pressure, a decrease in the dosing time, and others. In addition, the speed and linear values of the process have changed. For the first time had performed a detailed comparative analysis the main processing parameters by injection molding and the physic-mechanicals properties of polymer compositions based on polyamide 6.6. The results will allow a professional approach to the selection of polymer compositions and technological parameters the process of their processing by injection molding.


2016 ◽  
Vol 716 ◽  
pp. 708-712 ◽  
Author(s):  
Peter Bella ◽  
Pavol Buček ◽  
Martin Ridzoň ◽  
Milan Mojžiš ◽  
Ľudovít Parilák

In Železiarne Podbrezová, cold drawing process is the final process in production of precision seamless steel tubes. This particular technology utilizes multiple drawing sequences and intermediate annealing. From the physical point of view, it is nothing just the optimal use of plastic deformation during cold forming that grants the final tube dimensions. The drawing process itself is significantly affected by physical and metallurgical properties of the tube, the tool geometry, the lubrication, and the sequence of operations. This paper deals with the relationship between the tool geometry and the drawing force. The FEM-based numerical model of the process was prepared in DEFORM 3D in order to optimize the geometry of the die; eight die geometries were investigated in total. The numerical simulation itself considered a hot rolled hollow at Ø32 mm × 4 mm, cold drawn into Ø25 mm × 4 mm using die drawing (sinking) sequences only. Calculated drawing force showed that the change of the run-in angle of the die led to a decrease of the drawing force.


2016 ◽  
Vol 716 ◽  
pp. 63-67 ◽  
Author(s):  
Gow Yi Tzou ◽  
Dyi Cheng Chen ◽  
Shih Hsien Lin

This study proposes a cold drawing technology of wire rod with rotating die; it carries out an FEM simulation on rotating drawing using DEFORM-3D commercial software. Frictions among the die and the wire material are assumed as constant shear friction. The effective stress, the effective strain, the velocity field, and the drawing force can be determined from the FEM simulation. In this study, effects of various drawing conditions such as the rotating angular velocity, the half die angle, the frictional factor, the die filet on the drawing forming characteristics are explored effectively. From this FEM simulation, it is noted that the rotating die effect can reduce the drawing force and increase the material flow.


Author(s):  
Юрий Зубарев ◽  
Yuriy Zubarev ◽  
Александр Приемышев ◽  
Alexsandr Priyomyshev

Tool materials used for polymeric composite blank machining, kinds of tool material wear arising at machining these blanks, and also the impact of technological parameters upon tool wear are considered. The obtained results allow estimating the potentialities of physical models at polymeric composite blanks cutting.


Author(s):  
Daniel Maier ◽  
Sophie Stebner ◽  
Ahmed Ismail ◽  
Michael Dölz ◽  
Boris Lohmann ◽  
...  

Proceedings ◽  
2020 ◽  
Vol 70 (1) ◽  
pp. 103
Author(s):  
Jin Mark D. G. Pagulayan ◽  
Aprille Suzette V. Mendoza ◽  
Fredelyn S. Gascon ◽  
Jan Carlo C. Aningat ◽  
Abigail S. Rustia ◽  
...  

The study aimed to evaluate the effects of process parameters (time and raw material weight (RMW)) of conventional (boiling for 10–45 min) and microwave-assisted (2–8 min) aqueous extraction on the color quality (i.e., lightness (L*), chroma (C*), and hue (H°) of anthocyanin –based colorants of red and Inubi sweet potato (Ipomoea batatas L.) leaves. Using response surface methodology, it was found that RMW and boiling time (BT) and microwave time (MT) generally had a significant (p < 0.05) effect on the color quality of the extract from both extraction methods. The effects were found to vary depending on the extraction method and variety of the leaves used. Both extraction methods produced a brown to brick-red extract from the Inubi variety that turned red-violet to pink when acidified. The red sweet potato leaves produced a deep violet colored extract that also turned red-violet when acidified. It is recommended that the anthocyanin content of the extracts be measured to validate the impact of the methods on the active agent. Nevertheless, the outcomes in this study may serve as baseline data for further studies on the potential of sweet potato leaf colorants (SPLC) as a colorant with functional properties.


Agronomy ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 560
Author(s):  
Luigi Formisano ◽  
Michele Ciriello ◽  
Christophe El-Nakhel ◽  
Marios C. Kyriacou ◽  
Youssef Rouphael

In the Italian culinary tradition, young and tender leaves of Genovese basil (Ocimum basilicum L.) are used to prepare pesto sauce, a tasty condiment that attracts the interest of the food processing industry. Like other leafy or aromatic vegetables, basil is harvested more than once during the crop cycle to maximize yield. However, the mechanical stress induced by successive cuts can affect crucial parameters associated with pesto processing (leaf/stem ratio, stem diameter, and dry matter). Our research accordingly aimed to evaluate the impact of successive harvests on three field-grown Genovese basil cultivars (“Aroma 2”, “Eleonora” and “Italiano Classico”) in terms of production, physiological behavior, and technological parameters. Between the first and second harvest, marketable fresh yield and shoot dry biomass increased by 148.4% and 172.9%, respectively; by contrast, the leaf-to-stem ratio decreased by 22.5%, while the dry matter content was unchanged. The increased fresh yield and shoot dry biomass at the second harvest derived from improved photosynthetic efficiency, which enabled higher net CO2 assimilation, Fv/Fm and transpiration as well as reduced stomatal resistance. Our findings suggest that, under the Mediterranean environment, “Italiano Classico” carries superior productive performance and optimal technological characteristics in line with industrial requirements. These promising results warrant further investigation of the impact successive harvests may have on the qualitative components of high-yielding basil genotypes with respect to consumer expectations of the final product.


Sign in / Sign up

Export Citation Format

Share Document