Studies of Kinetic Plasticity Effect in High-Speed Steels under Martensite Transformation

2020 ◽  
Vol 303 ◽  
pp. 8-14
Author(s):  
L.G. Demenkova ◽  
S.A. Solodsky ◽  
D.P. Ilyashchenko

In the paper the authors study how the kinetic plasticity effects the temporary and residual stresses formed in instrumental steels when cooling. They also present the results of temporary stresses relaxation. This phenomenon was applied within the temperature range of the martensite transformation to reduce the cold cracking of the surfaced metal. The paper shows that the superplasticity effect emerging at the moment of martensite transformation plays the crucial role in temporary stresses relaxation.

2014 ◽  
Vol 69 (1) ◽  
pp. 46-53 ◽  
Author(s):  
R. L. Peng ◽  
J.-M. Zhou ◽  
S. Johansson ◽  
A. Bellinius ◽  
V. Bushlya ◽  
...  

Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1154
Author(s):  
Diego E. Lozano ◽  
George E. Totten ◽  
Yaneth Bedolla-Gil ◽  
Martha Guerrero-Mata ◽  
Marcel Carpio ◽  
...  

Automotive components manufacturers use the 5160 steel in leaf and coil springs. The industrial heat treatment process consists in austenitizing followed by the oil quenching and tempering process. Typically, compressive residual stresses are induced by shot peening on the surface of automotive springs to bestow compressive residual stresses that improve the fatigue resistance and increase the service life of the parts after heat treatment. In this work, a high-speed quenching was used to achieve compressive residual stresses on the surface of AISI/SAE 5160 steel samples by producing high thermal gradients and interrupting the cooling in order to generate a case-core microstructure. A special laboratory equipment was designed and built, which uses water as the quenching media in a high-speed water chamber. The severity of the cooling was characterized with embedded thermocouples to obtain the cooling curves at different depths from the surface. Samples were cooled for various times to produce different hardened case depths. The microstructure of specimens was observed with a scanning electron microscope (SEM). X-ray diffraction (XRD) was used to estimate the magnitude of residual stresses on the surface of the specimens. Compressive residual stresses at the surface and sub-surface of about −700 MPa were obtained.


2013 ◽  
Vol 834-836 ◽  
pp. 861-865 ◽  
Author(s):  
Yong Shou Liang ◽  
Jun Xue Ren ◽  
Yuan Feng Luo ◽  
Ding Hua Zhang

An experimental study was conducted to determine cutting parameters of high-speed milling of Ti-17 according to their effects on residual stresses. First, three groups of single factor experiments were carried out to reveal the effects of cutting parameters on residual stresses. Then sensitivity models were established to evaluate the influence degrees of cutting parameters on residual stresses. After that, three criteria were proposed to determine cutting parameters from experimental parameter ranges. In the experiments, the cutting parameter ranges are recommended as [371.8, 406.8] m/min, [0.363, 0.412] mm and [0, 0.018] mm/z for cutting speed, cutting depth and feed per tooth, respectively.


2014 ◽  
Vol 879 ◽  
pp. 169-174
Author(s):  
R. Sauti ◽  
N.A. Wahab ◽  
M.A. Omar ◽  
I.N. Ahmad

This paper reports on the compatibility of waste rubber as binder for M2 High Speed Steel injection moulding. The feedstock was prepared at a powder loading of 65 vol.% using 22μm M2 High Speed Steel powder and the binders consisting of 55wt.% paraffin wax, 21wt.% polyethylene, 14wt.% waste rubber and 10wt.% stearic acid. The specimens were then sintered in vacuum and 95%N2/5%H2 atmosphere. The sintering in vacuum atmosphere occurred within a temperature range from1200°C to 1260°C, whilst the 95%N2/5%H2 atmosphere was carried out within a temperature range from 1220°C to 1300°C. The effects of the sintering atmosphere and temperature on the physical properties, mechanical properties and microstructure were investigated.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5374
Author(s):  
Young-In Hwang ◽  
Yong-Il Kim ◽  
Dae-Cheol Seo ◽  
Mu-Kyung Seo ◽  
Woo-Sang Lee ◽  
...  

Residual stress, a factor affecting the fatigue and fracture characteristics of rails, is formed during the processes of fabrication and heat treatment, and is also generated by vertical loads on wheels due to the weight of vehicles. Moreover, damage to rails tends to accelerate due to the continuous increase in the number of passes and to the high speed of passing vehicles. Because this can have a direct effect on safety accidents, having a technique to evaluate and analyze the residual stresses in rails accurately is very important. In this study, stresses due to tensile loads applied to new rails and residual stresses remaining in used rails were measured by using magnetic Barkhausen noise method. First, a magnetization frequency and noise band suitable for the rails were selected. Moreover, by applying tensile loads to specimens and comparing the difference in magnetization amplitudes for each load, the stresses applied to the rails by using the magnetic Barkhausen noise method were measured, and the analysis of the results was verified. Based on these results, the difference in the results for the loads asymmetrically applied according to the wheel shape was analyzed by measuring for the head parts of used rails.


2019 ◽  
Vol 13 (1) ◽  
pp. 4415-4433
Author(s):  
I. B. Owunna ◽  
A. E. Ikpe

Induced residual stresses on AISI 1020 low carbon steel plate during Tungsten Inert Gas (TIG) welding process was evaluated in this study using experimental and Finite Element Method (FEM). The temperature range measured from the welding experimentation was 251°C-423°C, while the temperature range measured from the FEM was 230°C-563°C; whereas, the residual stress range measured from the welding experimentation was 144MPa-402Mpa, while the residual range measured from the FEM was 233-477MPa respectively. Comparing the temperature and stress results obtained from both methods, it was observed that the range of temperature and residual stresses measured were not exactly the same due to the principles at which both methods operate but disparities between the methods were not outrageous. However, these values can be fed back to optimization tools to obtain optimal parameters for best practices.  Results of the induced stress distribution was created from a static study where the thermal results were used as loading conditions and it was observed that the temperature increased as the von-Mises stress increased, indicating that induced stresses in welded component may hamper the longevity of such component in service condition. Hence, post-weld heat treatment is imperative in order to stress relieve metals after welding operation and improve their service life.


2018 ◽  
Vol 24 (3) ◽  
pp. 83-90 ◽  
Author(s):  
A. Yu. Mushkin ◽  
D. G. Naumov ◽  
E. Yu. Umenushkina

Purpose of the study— to study impact of hemi-vertebrae extirpation technique in mono-segmental reconstructionon the surgical trauma.Material and Methods.34 patients underwent 36 mono-segmental extirpations of hemi-vertebrae followed by aposterior fixation during a single center four years cohort study. Mean age of children at the moment of procedure was 4 years and 3 months (min — 1 year, max — 14 years). The authors studied impact of pathology level, surgical approach, type of bony structures removal technique and age of the patients on the time of procedure and volume of blood loss. Results.Extirpation of thoracic hemi-vertebrae was characterized by a lengthier procedure and greater blood lossin contrast to lumbar hemi-vertebrae. Patients were divided into three groups depending on extirpation technique: 1)  extirpation from two approaches using a high-speed burr; 2) from a single dorsal approach using the same extirpation technique; 3) from dorsal approach using ultrasonic bone scalpel. Surgery time was 208±72 min in the first group, 187±54 min in the second group, and 170±30 min in the third group; blood loss volume was 181±39, 181±53, 132±73 ml respectively in the groups, or 11.5±4.3%, 9.4±2.8% and 9.6±5.2% of total blood volume, respectively.Conclusion.Surgical approach and hemi-vertebrae extirpation technique in children have a varying impact onsurgery time and intraoperative blood loss, and the least values were reported for posterior approach using ultrasonic bone scalpel.


Elem Sci Anth ◽  
2017 ◽  
Vol 5 ◽  
Author(s):  
Peter L. L. Walls ◽  
James C. Bird

The concentration of microbes and other particulates is frequently enriched in the droplets produced by bursting bubbles. As a bubble rises to the ocean surface, particulates in the bulk liquid can be transported to the sea surface microlayer by attaching to the bubble’s interface. When the bubble eventually ruptures, a fraction of these particulates is often ejected into the surroundings in film droplets with a particulate concentration that is higher than in the liquid from which they formed. The precise mechanisms responsible for this enrichment are unclear, yet such enrichment at the ocean surface influences important exchange processes with the atmosphere. Here we provide evidence that drainage, coupled with scavenging, is responsible for the enrichment. By simultaneously recording the drainage and rupture effects with high-speed and standard photography, we directly measured the particulate concentrations in the thin film of a bubble cap at the moment before it ruptures. We observed that the enrichment factor strongly depends on the film thickness at rupture, and developed a physical model, based on scavenging and drainage, that is consistent with our observations. We have also demonstrated that this model is quantitatively consistent with prior observations of film drop enrichment, indicating its potential for a broader range of applications in the study of the sea surface microlayer and related phenomena.


2011 ◽  
Vol 239-242 ◽  
pp. 2331-2335 ◽  
Author(s):  
Fang Mei ◽  
Guang Zhou Sui ◽  
Man Feng Gong

TiN coatings were deposited on AISI M2 high-speed-steel (HSS) substrates by multi-arc ion plating technique. The thickness of substrate was 1.0 mm and five thicknesses of TiN coatings were 3.0, 5.0, 7.0, 9.0 and 11.0 μm, respectively. X-ray diffraction (XRD) has been used for measuring residual stresses. The stresses along five different directions (Ψ=0°, 20.7°, 30°, 37.8° and 45°) have been measured by recording the peak positions of TiN (220) reflection for each 2θ at different tilt angles Ψ. Residual compressive stresses present in the TiN coatings. Furthermore, the results revealed that the value of the residual stresses in TiN coatings was high. While the coatings thickness changed from 3 to 11 μm, the residual stresses varied from -3.22 to -2.04 GPa, the intrinsic stresses -1.32 to -0.14 GPa, the thermal stresses -1.86 to -1.75 GPa. The residual stresses in TiN coatings showed a nonlinear change. When the coatings thickness was about 8 μm, the residual stresses in TiN coatings reached to the maximum value.


1971 ◽  
Vol 93 (2) ◽  
pp. 636-644 ◽  
Author(s):  
Peter W. Jasinski ◽  
Ho Chong Lee ◽  
George N. Sandor

The research involved in this paper falls into the area of analytical vibrations applied to planar mechanical linkages. Specifically, a study of the vibrations, associated with an elastic connecting-bar for a high-speed slider-crank mechanism, is made. To simplify the mathematical analysis, the vibrations of an externally viscously damped uniform elastic connecting bar is taken to be hinged at each end (i.e., the moment and displacement are assumed to vanish at each end). The equations governing the vibrations of the elastic bar are derived, a small parameter is found, and the solution is developed as an asymptotic expansion in terms of this small parameter with the aid of the Krylov-Bogoliubov method of averaging. The elastic stability is studied and the steady-state solutions for both the longitudinal and transverse vibrations are found.


Sign in / Sign up

Export Citation Format

Share Document