Extractive composition and summative chemical analysis of thermally treated eucalypt wood

Holzforschung ◽  
2008 ◽  
Vol 62 (3) ◽  
Author(s):  
Bruno Esteves ◽  
José Graça ◽  
Helena Pereira

Abstract Eucalypt wood (Eucalyptus globulus) was heated in an oven for 2–24 h at 170–200°C and in an autoclave with superheated and saturated steam for 2–12 h at 190–210°C. The chemical composition of untreated wood and thermally treated wood with different mass losses in the range of 1.1–11.9% was studied by summative analysis, and the composition of dichloromethane, ethanol and water extracts was determined by gas chromatography mass spectometry (GC-MS). The hemicelluloses degraded first, mainly regarding the arabinose and xylose moieties. Lignin degraded at a slower rate and cellulose was only slightly affected under severe treatment conditions. The extractive content increased first with heat treatment and decreased later on. Almost all of the original extractives disappeared and new compounds were formed, such as anhydrosugars, mannosan, galactosan, levoglucosan and two C5 anhydrosugars. The most prominent lignin derived compounds were syringaldehyde, syringic acid and sinapaldehyde. The main difference between autoclave and oven treated samples was the appearance of more oxidized extractives for the oven treatment.

Holzforschung ◽  
2008 ◽  
Vol 62 (3) ◽  
Author(s):  
Oleksandr Skyba ◽  
Peter Niemz ◽  
Francis W.M.R. Schwarze

Abstract Thermo-hygro-mechanical (THM)-densified wood is more resistant to colonisation and degradation by brown-rot fungi than untreated wood. Colonisation and degradation by soft-rot fungi was investigated in treated Norway spruce (Picea abies) and treated beech (Fagus sylvatica) to assess their suitability for utility class 4. Three different treatments were applied: thermal-hygro (TH) treatment, mechanical densification and THM-treatment including densification and post-treatment under saturated steam conditions at different temperatures. For comparison, additional wood specimens were treated with two concentrations of a chromium-copper (CC) wood preservative. After 32 weeks incubation, weight losses induced by soft-rot fungi were lowest in wood treated with CC. Highest weight losses were recorded from TH-treated wood, in which soft-rot erosion attack (type 2) was exclusively observed in spruce. In comparison to controls, significantly lower weight losses by soft-rot fungi were recorded in THM-treated spruce wood, but no such differences were found in beech wood. Microscopical examination showed that in THM-treated wood of spruce, soft-rot type 1 commenced from the outer wood surfaces and cavity formation was not found in deeper regions of the wood samples. THM-treated beech wood was more susceptible to degradation than that of spruce which can be partly explained by the higher syringyl lignin content in beech wood, which is more susceptible to all kinds of degradation. Hyphal colonisation and soft-rot was facilitated within deeper regions of beech wood mainly in the non-occluded lumina of parenchyma cells in multiseriate xylem rays. It can be concluded that TH-treated spruce wood and THM-treated beech wood is susceptible to soft-rot and therefore inappropriate for utility class 4.


2021 ◽  
Vol 67 (1) ◽  
Author(s):  
Chun-Won Kang ◽  
Eun-Suk Jang ◽  
Nam-Ho Lee ◽  
Sang-Sik Jang ◽  
Min Lee

AbstractWe investigated the effect of ultrasonic treatment on Malas (Homalium foetidum) gas permeability and sound absorption coefficient using the transfer function method. Results showed a longitudinal average Darcy permeability constant of 2.02 (standard deviation SD 0.72) for untreated wood and 6.15 (SD 3.07) for ultrasound-treated wood, a permeability increase of 3.04 times. We also determined the average sound absorption coefficients in the range of 50 to 6.4 kHz and NRC (noise reduction coefficient: average value of sound absorption coefficient value at 250, 500, 1000, and 2000 Hz) of untreated Malas. Those values were 0.23 (SD 0.02) and 0.13 (SD 0.01), respectively, while those of ultrasonic-treated Malas were 0.28 (SD 0.02) and 0.14 (SD 0.02), a 19.74% increase in average sound absorption coefficient.


Holzforschung ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Lukas Emmerich ◽  
Maja Bleckmann ◽  
Sarah Strohbusch ◽  
Christian Brischke ◽  
Susanne Bollmus ◽  
...  

Abstract Chemical wood modification has been used to modify wood and improve its decay resistance. However, the mode of protective action is still not fully understood. Occasionally, outdoor products made from chemically modified timber (CMT) show internal decay while their outer shell remains intact. Hence, it was hypothesized that wood decay fungi may grow through CMT without losing their capability to degrade non-modified wood. This study aimed at developing a laboratory test set-up to investigate (1) whether decay fungi grow through CMT and (2) retain their ability to degrade non-modified wood. Acetylated and 1,3-dimethylol-4,5-dihydroxyethyleneurea (DMDHEU) treated wood were used in decay tests with modified ‘mantle specimens’ and untreated ‘core dowels’. It became evident that white rot (Trametes versicolor), brown rot (Coniophora puteana) and soft rot fungi can grow through CMT without losing their ability to degrade untreated wood. Consequently, full volume impregnation of wood with the modifying agent is required to achieve complete protection of wooden products. In decay tests with DMDHEU treated specimens, significant amounts of apparently non-fixated DMDHEU were translocated from modified mantle specimens to untreated wood cores. A diffusion-driven transport of nitrogen and DMDHEU seemed to be responsible for mass translocation during decay testing.


2019 ◽  
Vol 41 (3) ◽  
pp. 549-549
Author(s):  
Xuesong Wang and Xiaorong Tang Xuesong Wang and Xiaorong Tang

A series of novel benzamide derivatives according to fluopicolide were designed and synthesized following the rule of combination carboxylic acid amides and amines derivatives together. The antifungal activity of the 15 new compounds were evaluated in vitro against five pathogenic fungi, including Sclerotinia sclerotiorum, Gibberella zeae, Rhizoctonia solani, Helminthosporium maydis and Botrytis cinerea. Almost all the structure have not been reported, except compounds 3, 5 and 6. A surprising finding is that all the five tested fungi breed faster than negative controls when supplementary with compound 715 , respectively.


Holzforschung ◽  
2008 ◽  
Vol 62 (2) ◽  
pp. 223-229 ◽  
Author(s):  
Karin Fackler ◽  
Thomas Kuncinger ◽  
Thomas Ters ◽  
Ewald Srebotnik

Abstract Enzymatic functionalization is an attractive tool to provide a reactive interface for further processing of lignocellulosic materials, such as wood particles and fibers. Here, spruce wood particles have been functionalized by fungal laccase combined with 4-hydroxy-3-methoxy-benzylamine (HMBA) or 4-hydroxy-3-methoxybenzylurea (HMBU). The expectation was crosslinking with resins in subsequent glueing processes, which should improve strength properties of particle boards. Essential process parameters, such as liquid to solid mass ratio and treatment time, were optimized on a laboratory scale resulting in HMBA and HMBU binding yields of 90% and above as determined by radiochemical mass balance analysis. We employed a multifactorial experimental design for board production from treated wood particles and urea/formaldehyde resin. Mechanical testing and multivariate data analysis revealed, for the first time, an increase of internal bond (IB) as a result of functionalization with HMBU. HMBA was not successful. Variance analysis of relevant parameters and their interactions demonstrated a highly significant difference (P>99.99%) between boards treated with laccase/HMBU versus untreated wood particles. Due to positive interactions, functionalization was most effective at high bulk density (750 kg m-3) and high resin content (10%) resulting in a calculated IB improvement of 0.12 N m-2 (21%).


Author(s):  
Elaine Cristina Lengowski ◽  
Graciela Inês Bolzon de Muñiz ◽  
Umberto Klock ◽  
Silvana Nisgoski

Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 370
Author(s):  
Hadi Gholamiyan ◽  
Behnam Gholampoor ◽  
Reza Hosseinpourpia

This research investigates the effect of plasma treatment with air, nitrogen (N2), and carbon dioxide (CO2) gases on the performance of waterborne (acrylic) and solvent-borne (polyester) coated fir (Abies alba M.) wood samples. The properties of the plasma-coated samples were analyzed before and after exposure to accelerated weathering and compared with those of untreated and solely treated ones. According to pull-off testing, the coating adhesion of the wood samples was considerably improved by plasma treatment, and obvious differences were observed between different plasma gases. The effect was more pronounced after the weathering test. Similar results were obtained for the abrasion resistance of the samples. The water contact angle measurement illustrated more hydrophilic character in the solely plasma-treated wood in comparison with the untreated wood. The application of coatings, however, strongly improved its hydrophobic character. The performances of waterborne and solvent-borne coatings on plasma-treated wood were comparable, although slightly better values were obtained by the waterborne system. Our results exhibit the positive effect of plasma treatment on coating performances and the increased weather resistance of the waterborne and solvent-borne coating systems on plasma-treated wood.


2014 ◽  
Vol 2 ◽  
pp. 345-352 ◽  
Author(s):  
Cristina Marinela Olarescu ◽  
Mihaela Campean

Heat treatment is renowned as the most environmentally friendly process of dimensional stabilization that can be applied to wood, in order to make it suitable for outdoor uses. It also darkens wood color and improves wood durability. The intensity of heat treatment can be appreciated by means of two parameters: the color change occured in wood due to the high temperature, and the mass loss, which is a measure of the degree of thermal degradation. In order to find a mathematical correlation between these two parameters, an experimental study was conducted with four European wood species, which were heat-treated at 180°C and 200ºC, for 1-3 hours, under atmosheric pressure.The paper presents the results concerning the color changes and mass losses recorded for the heat-treated wood samples compared to untreated wood.  For all four species, the dependency between the color change and the mass loss was found to be best described by a logarithmic regression equation with R2 of 0.93 to 0.99 for the soft species (spruce, pine and lime), and R2 of 0.77 for beech. The results of this study envisage to simplify the assessment procedure of the heat treatment efficiency, by only measuring the color – a feature that is both convenient and cost-effective. 


2020 ◽  
Vol 4 (3) ◽  
pp. 99-106
Author(s):  
David Oriabure Ekhuemelo ◽  
Francis Sarwuan Agbidye ◽  
Blessing Igoche

This study investigated effect of Euphorbia tirucalli extracts on Daniellia oliveri and Ficus capensis woods. Wood samples were purchased and processed into 10 cm x 2 cm x 2 cm dimensions, while plant parts collected were oven dried before extraction. E. tirucalli  was screened for phytochemicals. Concentrations of 0.5%, 1% and 2% extracts were prepared by serial dilution. Soligum, methanol and untreated wood samples were used as control. Treated wood samples were laid within 6 x 12 metres field at 1 x 3 metres spacing in a Completely Randomized Design (CRD) in a termitarium and data were taken within 8 weeks. Phytochemical results indicated the presence of alkaloids, phenols, tannins, cardiac glycosides, flavonoids and saponins. Percentage absorption of extracts ranged from 47 - 86 % and 94.00 - 50.67 % in D. oliveri and F. capensis, respectively. Percentage retention of extracts ranged from 10.84 - 2.14 kg/m3 and 11.62 - 7.01 kg/m3 in D. oliveri and F. capensis. Soligum treated wood samples were not attacked throughout the period of study. D. oliveri and F. capensis woods treated with 0.5% E. tirucalli methanol extract were not attached on till the 6th and 8th week respectively. The least percentage weight loss of 5.49 % and 28.32 % were recorded for D. oliveri and F. capensis woods treated with soligum, while, 27.5 5 % and 52.50 % weight loss were recorded for F. capensis and D. oliveri woods treated with 0.5% methanol extract. It was concluded that the use o


2021 ◽  
Author(s):  
◽  
Errj Sansonetti

Wood has great potential for uses in outdoor conditions, but it can be easily degraded due to the action of environmental factors (solar radiation, moisture, fungi, insects, etc.). The protection of wood is therefore a very actual research topic, and it is also the object of this work. The main goal of this Doctoral Thesis is to obtain a water-based alkyd paint formulation in the form of emulsion and to optimize its composition with necessary additives, in particular, with nanosized red iron oxide pigments which can protect the decorative qualities of thermally treated wood (TTW) during outdoor exposure. In the literature review, the main factors responsible for the degradation of wood and their effect on the structure and properties of wood are summarized. The chemistry of coatings for the protection of wood and the challenges that are faced in reformulation of paints, due to more stringent regulations which limit the use of organic solvents and promote greener alternatives, like water-based paint formulations, are considered. In Europe, this is stated by the Directive 2004/42/EC of the European Parliament on the limitation of emissions of volatile organic compounds (VOC) from decorative paints and varnishes. In the first part of the experimental section, the optimal composition of the alkyd emulsion and the effects of additives on the film properties have been investigated. The different chemo-physical properties of thermally treated wood compared with those of untreated wood have been also evaluated. After thermal modification, wood becomes more hydrophobic and this has been confirmed from the changes of the surface energy of thermally treated wood: the polar component of the surface energy decreases with increasing temperature of thermal modification. In the second part of the experimental section, artificial and outdoor weathering tests have been done to determine the suitable concentration of red iron oxide nanoparticles which can give better protection against photodegradation. Results show that red iron oxide pigments at a concentration of 8 % in alkyd emulsion are efficient to protect the wood surface against discoloration. During the outdoor weathering test, the performance of alkyd emulsion has been compared with that of the solvent-based formulation. Results confirm that the water-based alkyd emulsion gives better protection of the thermally treated wood surface than the solvent-based formulation, thus confirming that the replacement of organic solvent with water gives a product with equivalent or better properties for the protection of thermally treated wood in outdoor conditions.


Sign in / Sign up

Export Citation Format

Share Document