Integration of Electrografted Layers for the Metallization of Deep TSVs

2010 ◽  
Vol 2010 (DPC) ◽  
pp. 000803-000830
Author(s):  
Claudio Truzzi ◽  
F. Raynal ◽  
V. Mevellec ◽  
N. Frederich ◽  
D. Suhr ◽  
...  

Electrografting (eG) is a molecular engineering technology delivering high-quality films for Through Silicon Vias (TSVs). It generates surface-initiated conformal films which are thin, continuous, adherent and uniform. It is a wet-process technique, operated in standard plating tools, and is used on (semi)-conductive surfaces. Chemical grafting (cG) is a similar technology, used to graft films on non-conductive surfaces. A wet deposition of insulator, barrier and copper seed layers inside deep TSVs using a combination of electrografting and chemical grafting techniques has already been demonstrated [1, 2]. Electrografting and chemical grafting formulations and processes have been developed and specifically tailored for TSV diameters ranging from 1 to 200 μm, covering a depth/diameter Aspect Ratio (AR) range from 2:1 to 20:1. Film thickness can be controlled to any value from 50nm to few microns, depending on the layer, with 5% 3ó in-wafer non-uniformity, providing a step coverage (bottom/top thickness ratio) value of up to 90%. Adhesion of all layers is measured using a 16-square scribe tape test method: all layers successfully pass the test. The presentation will focus on film properties and show how TSV formed using these layers meet all key process requirements such as conformality, uniformity, adhesion, reliability and industrial compatibility for cost-effective high volume manufacturing of TSV wafers. A comprehensive set of film properties and reliability data characterized on blanket and pattern 200-mm Si wafers will be discussed. Integration schemes of electrografted layers within current 3D packaging process flows will be presented.

Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1145
Author(s):  
Wei Li ◽  
Sen Han ◽  
Xiaokang Fu ◽  
Ke Huang

The aims of this paper are to prepare disintegrated high volume crumb rubber asphalt (DHVRA) with low viscosity, good workability and low-temperature performance by adding disintegrating agent (DA) in the preparation process, and to further analyze the disintegrating mechanism and evaluated high-temperature and low-temperature rheological properties. To obtain DHVRA with excellent comprehensive performance, the optimum DA dosage was determined. Based on long-term disintegrating tests and the Fluorescence Microscopy (FM) method, the correlations between key indexes and crumb rubber (CR) particle diameter was analyzed, and the evaluation indicator and disintegrating stage division standard were put forward. Furthermore, Fourier transform infrared spectroscopy (FT-IR) and Gel Permeation Chromatography (GPC) was used to reveal the reaction mechanism, and the contact angle test method was adopted to evaluate the surface free energy (SFE). In addition, the high-temperature and low-temperature rheological properties were measured, and the optimum CR content was proposed. Results indicated that the optimum DA dosage was 7.5‰, and the addition of DA promoted the melt decomposition of CR, reduced the viscosity and improved the storage stability. The 135 °C rotational viscosity (RV) of DHVRA from mixing for 3 h could be reduced to 1.475 Pa·s, and the softening point difference was even less than 2 °C. The linear correlation between 135 °C RV and the diameter of CR particle in rubber asphalt system was as high as 0.968, and the viscosity decay rate (VDR) was used as the standard to divide the disintegrating process into a fast disintegrating stage, stable disintegrating stage and slight disintegrating stage. Compared to common rubber asphalt (CRA), DHVRA has an absorption peak at 960 cm−1 caused by trans olefin = C-H, and higher molecular weight and polar component of surface energy. Compared with CRA, although the high-temperature performance of DHVRA decreases slightly, the low-temperature relaxation ability can be greatly improved.


2001 ◽  
Vol 227-228 ◽  
pp. 143-149
Author(s):  
Larry Leung ◽  
Damian Davison ◽  
Arthur Cornfeld ◽  
Frederick Towner ◽  
Dave Hartzell

2010 ◽  
Vol 2010 (DPC) ◽  
pp. 001282-001321
Author(s):  
Sesh Ramaswami ◽  
John Dukovic

Continuous demand for more advanced electronic devices with higher functionality and superior performance in smaller packages is driving the semiconductor industry to develop new and more advanced 3D wafer-level interconnect technologies involving TSVs (through-silicon vias). The TSVs are created either on full-thickness wafer from the wafer front-side ¡V as part of wafer-fab processing during Middle-Of-Line (¡§via middle¡¨) or Back-End-Of-Line (¡§via last BEOL¡¨) ¡V or from the wafer backside after wafer thinning (¡§via last backside¡¨). Independent of the specific approach, the main steps include via etching, lining with insulator, copper barrier/seed deposition, via fill, and chemical mechanical planarization (CMP). Over the past year, the industry has been converging toward some primary unit processes and integration schemes for creating the TSVs. A common cost-of-ownership framework has also begun to emerge. Active collaboration underway among equipment suppliers, materials providers and end users is bringing about rapid development and validation of cost-effective TSV technology in end products. This presentation will address unit-process and integration challenges of TSV fabrication in the context of 20x100ƒÝm and 5x50ƒÝm baseline process flows at Applied Materials. Highlights of wafer-backside process integration involving wafers bonded to silicon or glass carriers will also be discussed.


2012 ◽  
Vol 2012 (DPC) ◽  
pp. 000832-000845 ◽  
Author(s):  
Aric Shorey ◽  
Scott Pollard

Through-substrate vias are critical for 3DS-IC integration. The choice of glass as an interposer substrate, TGV, present some interesting challenges and opportunities, making glass a compelling alternative to silicon. There are two primary challenges to begin building a precision interposer in thin glass. The first is high quality thin glass wafers (300 mm OD, thickness 0.05 to 0.10 mm, warp and TTV of 30 μm and 1 μm respectively). The second challenge is developing a process capable of providing small (5–10 μm) precision vias in a cost-effective way. “Glass” represents a large class of materials with a wide range of material properties. The first step in developing TGV is to identify the most appropriate glass composition for the application, which furthermore defines important properties such as coefficient of thermal expansion (CTE) and other mechanical properties, chemical durability and electrical properties. The manufacturing process used to develop the glass has a significant impact on quality and manufacturability. Fusion formed glass provides a solution for high volume manufacturing supply in an as-formed, ultra-thin, pristine glass manufactured to tight tolerances, and avoids the issues associated with polishing or thinning. The supply of 50 μm to 100 μm as-formed ultra-thin glass wafers can compare very favorably in cost relative to polished or thinned glass as well as thinned silicon wafer. While there are many technologies that have demonstrated vias in glass, challenges relating to via size and pitch, wafer strength and reliability remain to be resolved. However, substantial progress has been made to meet these challenges. Specific characterization data from some of these processes to demonstrate vias on the order of 10 μm diameter with a 100 μm glass thickness in alternative glass materials will be presented.


2010 ◽  
Vol 2010 (1) ◽  
pp. 000548-000553
Author(s):  
Zhaozhi Li ◽  
Brian J. Lewis ◽  
Paul N. Houston ◽  
Daniel F. Baldwin ◽  
Eugene A. Stout ◽  
...  

Three Dimensional (3D) Packaging has become an industry obsession as the market demand continues to grow toward higher packaging densities and smaller form factor. In the meanwhile, the 3D die-to-wafer (D2W) packaging structure is gaining popularity due to its high manufacturing throughput and low cost per package. In this paper, the development of the assembly process for a 3D die-to-wafer packaging technology, that leverages the wafer level assembly technique and flip chip process, is introduced. Research efforts were focused on the high-density flip chip wafer level assembly techniques, as well as the challenges, innovations and solutions associated with this type of 3D packaging technology. Processing challenges and innovations addressed include flip chip fluxing methods for very fine-pitch and small bump sizes; wafer level flip chip assembly program creation and yield improvements; and set up of the Pb-free reflow profile for the assembled wafer. 100% yield was achieved on the test vehicle wafer that has totally 1,876 flip chip dies assembled on it. This work has demonstrated that the flip chip 3D die-to-wafer packaging architecture can be processed with robust yield and high manufacturing throughput, and thus to be a cost effective, rapid time to market alternative to emerging 3D wafer level integration methodologies.


HPB ◽  
2019 ◽  
Vol 21 ◽  
pp. S30-S31
Author(s):  
E. Eguia ◽  
P.J. Sweigert ◽  
P.C. Kuo ◽  
H. Janjua ◽  
M.H. Nelson ◽  
...  

2011 ◽  
Vol 1323 ◽  
Author(s):  
Shirish A. Pethe ◽  
Ashwani Kaul ◽  
Neelkanth G. Dhere

ABSTRACTMolybdenum back contact deposition is a bottleneck in high volume manufacturing due to the current state of art where multi layer molybdenum film needs to be deposited to achieve the required properties. In order to understand and solve this problem experiments were carried out. The effect of working distance (distance between the target and the substrate) on film properties was studied and is presented in this work. Earlier work carried out at Florida Solar Energy Center reflected on the effect of the sputtering power and working gas pressure on the film properties. This work is continuation of that effort in understanding effects of various sputtering parameters and determining the possible route to develop single layer molybdenum films with the required properties of near zero stress, low resistivity and good adhesion to substrate.


Author(s):  
Piyush Upadhyay ◽  
Yuri Hovanski ◽  
Saumyadeep Jana ◽  
Leonard S. Fifield

Development of a robust and cost-effective method of joining dissimilar materials could provide a critical pathway to enable widespread use of multimaterial designs and components in mainstream industrial applications. The use of multimaterial components such as steel-aluminum and aluminum-polymer would allow design engineers to optimize material utilization based on service requirements and could often lead to weight and cost reductions. However, producing an effective joint between materials with vastly different thermal, microstructural, and deformation responses is highly problematic using conventional joining and/or fastening methods. This is especially challenging in cost sensitive, high volume markets that largely rely on low cost joining solutions. Friction stir scribe (FSS) technology was developed to meet the demands of joining materials with drastically different properties and melting regimes. The process enables joining of light metals like magnesium and aluminum to high temperature materials like steel and titanium. Viable joints between polymer composites and metal can also be made using this method. This paper will present the state of the art, progress made, and challenges associated with this innovative derivative of friction stir welding (FSW) in reference to joining dissimilar metals and polymer/metal combinations.


Author(s):  
Hwasung Rhee ◽  
Ilryong Kim ◽  
Jaehun Jeong ◽  
Nakjin Son ◽  
Heebum Hong ◽  
...  

Electronics ◽  
2019 ◽  
Vol 8 (7) ◽  
pp. 797 ◽  
Author(s):  
Jawad Yousaf ◽  
Doojin Lee ◽  
JunHee Han ◽  
Hosang Lee ◽  
Muhammad Faisal ◽  
...  

This study presents a near-field immunity test (NFIT) method for the fast debugging of radiated susceptibility of industrial devices. The proposed approach is based on the development of an NFIT setup which comprises of developed near-field electric and magnetic field probes and device under test (DUT). The developed small-size and handy near-field testing probes inject the high electric (up to 1000 V/m) and magnetic (up to 2.4 A/m) fields on the DUT in the radar pulse ranges (1.2 to 1.4 GHz and 2.7 to 3.1 GHz) with the lower fed input power (up to 15 W) from the power amplifier in the developed NFIT setup. The proof of concept is validated with the successful near-field immunity debugging of an electric power steering (EPS) device used in the automotive industry with the developed NFIT setup. The radiated susceptibility debugging test results of developed NFIT method and conventional method of ISO 11452-2 test setup turned out to be close to each other for the tested DUT in immunity performance. The proposed procedure has advantages of industry usefulness with fast, handy, and cost-effective radiated immunity debugging of the DUT without the requirement of large antenna, high-power amplifiers, optical DUT connecting harness, and an anechoic chamber as needed in ISO 11452-2 standard setup for the debugging analysis.


Sign in / Sign up

Export Citation Format

Share Document