Comparison of Au-In Transient Liquid Phase Bonding Designs for SiC Power Semiconductor Device Packaging

2011 ◽  
Vol 2011 (HITEN) ◽  
pp. 000077-000083 ◽  
Author(s):  
Brian Grummel ◽  
Habib A. Mustain ◽  
Z. John Shen ◽  
Allen R. Hefner

Transient liquid phase (TLP) bonding is an advanced die-attach technique for wide-bandgap power semiconductor and high-temperature packaging. TLP bonding advances current soldering techniques by raising the melting point to over 500 °C without detrimental high-lead materials. The bond also has greater reliability and rigidity due in part to a bonding temperature of 200 °C that drastically lowers the peak bond stresses. Furthermore, the thermal conductivity is increased 67 % while the bond thickness is substantially reduced, lowering the thermal resistance by an order of magnitude. This work provides an in-depth examination of the TLP fabrication methodology utilizing mechanical and thermal experimental characterization data along with thermal reliability results.

2019 ◽  
Vol 9 (1) ◽  
pp. 157 ◽  
Author(s):  
Hiroaki Tatsumi ◽  
Adrian Lis ◽  
Hiroshi Yamaguchi ◽  
Tomoki Matsuda ◽  
Tomokazu Sano ◽  
...  

The evolution of the transient liquid-phase sintered (TLPS) Cu–Sn skeleton microstructure during thermal aging was evaluated to clarify the thermal reliability for die-attach applications. The Cu–Sn skeleton microstructure, which consists of Cu particles connected with Cu–Sn intermetallic compounds partially filled with polyimide resin, was obtained by the pressure-less TLP sintering process at 250 °C for 1 min using a novel Cu-solder-resin composite as a bonding material in a nitrogen atmosphere. Experimental results indicate that the TLPS joints were mainly composed of Cu, Cu6Sn5, and Cu3Sn in the as-bonded state, where submicron voids were observed at the interface between Cu3Sn and Cu particles. After thermal aging at 150, 175, and 200 °C for 1000 h, the Cu6Sn5 phase fully transformed into Cu3Sn except at the chip-side interface, where the number of the submicron voids appeared to increase. The averaged shear strengths were found to be 22.1 (reference), 22.8 (+3%), 24.0 (+9%), and 19.0 MPa (−14%) for the as-bonded state and specimens aged at 150, 175, and 200 °C for 1000 h, respectively. The TLPS joints maintained a shear strength over 19 MPa after thermal aging at 200 °C for 1000 h because of both the positive and negative impacts of the thermal aging, which include the transformation of Cu6Sn5 into Cu3Sn and the formation of submicron voids at the interface, respectively. These results indicate an excellent thermal reliability of the TLPS Cu–Sn skeleton microstructure.


2010 ◽  
Vol 442 ◽  
pp. 66-73 ◽  
Author(s):  
A. Javadzadeh ◽  
T.I. Khan

The oil and gas industry of Alberta, Canada use coiled tubing made from high strength low alloyed steel (HSLA) to extract oil from reservoirs deep beneath the earth’s surface. The repeated use of the coiled tubing in down-hole wells results in fatigue failure of the tube material. In order to repair the coiled tube, a section of tubing is fusion welded using tungsten inert gas welding onto the remaining tube steel. However, the fusion weld often fails within the weld region and therefore, alternative joining methods need to be explored to minimize detrimental changes at the joint region. In this study transient liquid phase (TLP) bonding is used with the aid of metal interlayers based on the Ag-Cu and Ni-P systems. These interlayers form a liquid at the melting point and the gradual diffusion of alloying elements into the joint and the diffusion of elements out of the joint region induces isothermal solidification whilst the joint is held at the bonding temperature. The TLP bonding behaviour of the HSLA steel as a function of bonding parameters was investigated and the quality of the joint region determined using metallurgical techniques (light and scanning electron microscopy, energy dispersive spectroscopy) and mechanical testing.


2018 ◽  
Vol 53 (2) ◽  
pp. 147-160 ◽  
Author(s):  
D. H. Jung ◽  
A. Sharma ◽  
M. Mayer ◽  
J. P. Jung

Abstract In this study, the authors have reviewed recent advances on the transient liquid phase (TLP) bonding technology for various applications especially power module packaging in view of the recent increasing demand for the production of vehicles, smartphones, semiconductor devices etc. TLP bonding is one of the potential technologies from clean technology that can replace the Pb-base solder technology without causing any serious environmental issues. It is based on the concept of both brazing as well as diffusion bonding. During TLP bonding, the liquid phase is transiently formed at the bonding interface. At this point, the melting point of filler metal increases due to the diffusion of element which degrades the melting point from liquid phase to base metal. Subsequently, the bonding occurs by isothermal solidification at the bonding temperature of liquid phase. Here, after bonding, the melting temperature of the joint layer becomes higher than bonding temperature. This review introduces the various aspects of TLP bonding including its principle, materials, applications, advantages and properties in detail.


2011 ◽  
Vol 46 (16) ◽  
pp. 5305-5323 ◽  
Author(s):  
Grant O. Cook ◽  
Carl D. Sorensen

AbstractTransient liquid phase (TLP) bonding is a relatively new bonding process that joins materials using an interlayer. On heating, the interlayer melts and the interlayer element (or a constituent of an alloy interlayer) diffuses into the substrate materials, causing isothermal solidification. The result of this process is a bond that has a higher melting point than the bonding temperature. This bonding process has found many applications, most notably the joining and repair of Ni-based superalloy components. This article reviews important aspects of TLP bonding, such as kinetics of the process, experimental details (bonding time, interlayer thickness and format, and optimal bonding temperature), and advantages and disadvantages of the process. A wide range of materials that TLP bonding has been applied to is also presented. Partial transient liquid phase (PTLP) bonding is a variant of TLP bonding that is typically used to join ceramics. PTLP bonding requires an interlayer composed of multiple layers; the most common bond setup consists of a thick refractory core sandwiched by thin, lower-melting layers on each side. This article explains how the experimental details and bonding kinetics of PTLP bonding differ from TLP bonding. Also, a range of materials that have been joined by PTLP bonding is presented.


Metals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1504
Author(s):  
Chengcong Zhang ◽  
Amir Shirzadi

Joining heat conducting alloys, such as copper and its alloys, to heat resistant nickel-based superalloys has vast applications in nuclear power plants (including future fusion reactors) and liquid propellant launch vehicles. On the other hand, fusion welding of most dissimilar alloys tends to be unsuccessful due to incompatibilities in their physical properties and melting points. Therefore, solid-state processes, such as diffusion bonding, explosive welding, and friction welding, are considered and commercially used to join various families of dissimilar materials. However, the solid-state diffusion bonding of copper alloys normally results in a substantial deformation of the alloy under the applied bonding load. Therefore, transient liquid phase (TLP) bonding, which requires minimal bonding pressure, was considered to join copper alloy (C18150) to a nickel-based superalloy (GH4169) in this work. BNi-2 foil was used as an interlayer, and the optimum bonding time (keeping the bonding temperature constant as 1030 °C) was determined based on microstructural examinations by optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), tensile testing, and nano-hardness measurements. TLP bonding at 1030 °C for 90 min resulted in isothermal solidification, hence obtained joints free from eutectic phases. All of the tensile-tested samples failed within the copper alloy and away from their joints. The hardness distribution across the bond zone was also studied.


2018 ◽  
Vol 206 ◽  
pp. 03004 ◽  
Author(s):  
Xiong Yue ◽  
Fengmei Liu ◽  
Hexing Chen ◽  
Di Wan ◽  
Hongbo Qin

Transient liquid phase (TLP) bonding of Ni3Al-based superalloy IC10 was carried out using the interlayer based on the base metal which added B and Hf as the melting point depressant elements. The effect of bonding temperature (1250 – 1270 °C) on the microstructure evolution of bonding joints were investigated. Microstructure of bonding joint composed of isothermally solidification zone (ISZ) formed γ’ phase and athermally solidified zone (ASZ) which consists of newly formed γ+γ’ reticular eutectic among with borides and carbides. Boride precipitates are not formed in diffusion affected zone (DAZ) and the boundary between ASZ and ISZ become not obvious. Isothermally solidification rate decreases as the increase of the bonding temperature.


1997 ◽  
Vol 3 (2) ◽  
pp. 130-138
Author(s):  
W.F. Gale ◽  
Y. Guan ◽  
S.V. Orel

Abstract: Transient liquid phase (TLP) bonding is a joining process in which a liquid-forming interlayer is placed between the substrates to be joined. At the bonding temperature, the interlayer initially liquates. Subsequently, interdiffusion between the liquid interlayer and the adjacent substrates results in a change in the overall composition of the joint, such that isothermal resolidification of the joint takes place. Standard models of the TLP process assume the sequential occurrence of discrete dissolution, isothermal solidification, and homogenization processes. This study uses edge-on transmission electron microscopy investigations to challenge the general applicability of such standard models to the TLP bonding of a variety of systems involving the B2 type intermetallic compound NiAl as a substrate material. This article considers the formation of boride phases apparently at the bonding temperature in NiAl/Ni-Si-B/Ni bonds. The precipitation of repeating sequences of phases in NiAl/Cu/Ni joints and the reliquation of the NiTi substrate in NiAl/Cu/NiTi bonds after the completion of isothermal solidification are examined.


2004 ◽  
Vol 9 (6) ◽  
pp. 525-531 ◽  
Author(s):  
H. Duan ◽  
M. Koçak ◽  
K.-H. Bohm ◽  
V. Ventzke

Sign in / Sign up

Export Citation Format

Share Document