scholarly journals Metabolic effects of 3,5-Diiodo-L-Thyronine

Author(s):  
Marco Giammanco ◽  
Manfredi Marco Giammanco ◽  
Gaetano Leto ◽  
Herbert R. Marini

Thyroid hormones have been proposed as anti obesity drugs due to their effects on basal metabolism and the ability to increase energy expenditure. However, their clinical use has been strongly curbed by the concomitant onset of thyrotoxicosis. In this setting, several studies have been undertaken to assess the role of 3,5 diiodo- L-thyronine (T2), an endogenous metabolite of thyroid hormone derived from the enzymatic deiodination of triodothyronine T3. The metabolic effects of T2 are similar to those induced by T3. However, these effects appear to involve different and not welldefined mechanisms that make this molecule clinically useful as potential drug in the treatment of pathological conditions such as obesity and hepatic steatosis. The main pharmacological target of T2 appears to be the mitochondria. Therefore, the administration of T2 to obese subjects might improve the mitochondrial performance, which is generally recognized to be reduced in these subjects who must oxidize greater quantities of substrates. In this context, it can be hypothesized that T2, by acting mainly on mitochondrial function and oxidative stress, might be able to prevent and revert the tissue damages and hepatic steatosis induced by a hyperlipidic diet and a concomitant reduction in the circulating levels LDL and triglycerides as well. This review the discuss the mechanisms of action of T2 and the possible, future clinical uses of T2 analogs for the treatment lipid dysmetabolism related to obesity and overweight.

2020 ◽  
Vol 21 (11) ◽  
pp. 4140 ◽  
Author(s):  
Marco Giammanco ◽  
Carlo Maria Di Liegro ◽  
Gabriella Schiera ◽  
Italia Di Liegro

Since the realization that the cellular homologs of a gene found in the retrovirus that contributes to erythroblastosis in birds (v-erbA), i.e. the proto-oncogene c-erbA encodes the nuclear receptors for thyroid hormones (THs), most of the interest for THs focalized on their ability to control gene transcription. It was found, indeed, that, by regulating gene expression in many tissues, these hormones could mediate critical events both in development and in adult organisms. Among their effects, much attention was given to their ability to increase energy expenditure, and they were early proposed as anti-obesity drugs. However, their clinical use has been strongly challenged by the concomitant onset of toxic effects, especially on the heart. Notably, it has been clearly demonstrated that, besides their direct action on transcription (genomic effects), THs also have non-genomic effects, mediated by cell membrane and/or mitochondrial binding sites, and sometimes triggered by their endogenous catabolites. Among these latter molecules, 3,5-diiodo-L-thyronine (3,5-T2) has been attracting increasing interest because some of its metabolic effects are similar to those induced by T3, but it seems to be safer. The main target of 3,5-T2 appears to be the mitochondria, and it has been hypothesized that, by acting mainly on mitochondrial function and oxidative stress, 3,5-T2 might prevent and revert tissue damages and hepatic steatosis induced by a hyper-lipid diet, while concomitantly reducing the circulating levels of low density lipoproteins (LDL) and triglycerides. Besides a summary concerning general metabolism of THs, as well as their genomic and non-genomic effects, herein we will discuss resistance to THs and the possible mechanisms of action of 3,5-T2, also in relation to its possible clinical use as a drug.


2021 ◽  
Vol 22 (15) ◽  
pp. 7975
Author(s):  
Saioa Gómez-Zorita ◽  
Iñaki Milton-Laskibar ◽  
Laura García-Arellano ◽  
Marcela González ◽  
María P. Portillo

The present review is aimed at analysing the current evidence concerning the potential modulation of obesity and/or diet in adipose tissue ACE2. Additionally, the potential implications of these effects on COVID-19 are also addressed. The results published show that diet and obesity are two factors that effectively influence the expression of Ace2 gene in adipose tissue. However, the shifts in this gene do not always occur in the same direction, nor with the same intensity. Additionally, there is no consensus regarding the implications of increased adipose tissue ACE2 expression in health. Thus, while in some studies a protective role is attributed to ACE2 overexpression, other studies suggest otherwise. Similarly, there is much debate regarding the role played by ACE2 in COVID-19 in terms of degree of infection and disease outcomes. The greater risk of infection that may hypothetically derive from enhanced ACE2 expression is not clear since the functionality of the enzyme seems to be as important as the abundance. Thus, the greater abundance of ACE2 in adipose tissue of obese subjects may be counterbalanced by its lower activation. In addition, a protective role of ACE2 overexpression has also been suggested, associated with the increase in anti-inflammatory factors that it may produce.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2244
Author(s):  
Melania Melis ◽  
Mariano Mastinu ◽  
Stefano Pintus ◽  
Tiziana Cabras ◽  
Roberto Crnjar ◽  
...  

Taste plays an important role in processes such as food choices, nutrition status and health. Salivary proteins contribute to taste sensitivity. Taste reduction has been associated with obesity. Gender influences the obesity predisposition and the genetic ability to perceive the bitterness of 6-n-propylthiouracil (PROP), oral marker for food preferences and consumption. We investigated variations in the profile of salivary proteome, analyzed by HPLC-ESI-MS, between sixty-one normal weight subjects (NW) and fifty-seven subjects with obesity (OB), based on gender and PROP sensitivity. Results showed variations of taste-related salivary proteins between NW and OB, which were differently associated with gender and PROP sensitivity. High levels of Ps-1, II-2 and IB-1 proteins belonging to basic proline rich proteins (bPRPs) and PRP-1 protein belonging to acid proline rich proteins (aPRPs) were found in OB males, who showed a lower body mass index (BMI) than OB females. High levels of Ps-1 protein and Cystatin SN (Cyst SN) were found in OB non-tasters, who had lower BMI than OB super-tasters. These new insights on the role of salivary proteins as a factor driving the specific weight gain of OB females and super-tasters, suggest the use of specific proteins as a strategic tool modifying taste responses related to eating behavior.


2021 ◽  
Vol 12 (7) ◽  
Author(s):  
Lin Xu ◽  
Xinge Zhang ◽  
Yue Xin ◽  
Jie Ma ◽  
Chenyan Yang ◽  
...  

AbstractAlcohol-related liver disease (ALD), a condition caused by alcohol overconsumption, occurs in three stages of liver injury including steatosis, hepatitis, and cirrhosis. DEP domain-containing protein 5 (DEPDC5), a component of GAP activities towards Rags 1 (GATOR1) complex, is a repressor of amino acid-sensing branch of the mammalian target of rapamycin complex 1 (mTORC1) pathway. In the current study, we found that aberrant activation of mTORC1 was likely attributed to the reduction of DEPDC5 in the livers of ethanol-fed mice or ALD patients. To further define the in vivo role of DEPDC5 in ALD development, we generated Depdc5 hepatocyte-specific knockout mouse model (Depdc5-LKO) in which mTORC1 pathway was constitutively activated through loss of the inhibitory effect of GATOR1. Hepatic Depdc5 ablation leads to mild hepatomegaly and liver injury and protects against diet-induced liver steatosis. In contrast, ethanol-fed Depdc5-LKO mice developed severe hepatic steatosis and inflammation. Pharmacological intervention with Torin 1 suppressed mTORC1 activity and remarkably ameliorated ethanol-induced hepatic steatosis and inflammation in both control and Depdc5-LKO mice. The pathological effect of sustained mTORC1 activity in ALD may be attributed to the suppression of peroxisome proliferator activated receptor α (PPARα), the master regulator of fatty acid oxidation in hepatocytes, because fenofibrate (PPARα agonist) treatment reverses ethanol-induced liver steatosis and inflammation in Depdc5-LKO mice. These findings provide novel insights into the in vivo role of hepatic DEPDC5 in the development of ALD.


Author(s):  
Caterina Antonaglia ◽  
Giovanna Passuti

AbstractObstructive sleep apnea syndrome (OSAS) is characterized by symptoms and signs of more than 5 apneas per hour (AHI) at polysomnography or 15 or more apneas per hour without symptoms. In this review, the focus will be a subgroup of patients: adult non-obese subjects with OSA and their specific features. In non-obese OSA patients (patients with BMI < 30 kg/m2), there are specific polysomnographic features which reflect specific pathophysiological traits. Previous authors identified an anatomical factor (cranial anatomical factors, retrognatia, etc.) in OSA non-obese. We have hypothesized that in this subgroup of patients, there could be a non-anatomical pathological prevalent trait. Little evidence exists regarding the role of low arousal threshold. This factor could explain the difficulty in treating OSA in non-obese patients and emphasizes the importance of a specific therapeutic approach for each patient.


2020 ◽  
Vol 124 (4) ◽  
pp. 363-373
Author(s):  
N. M. Wade ◽  
L. H. Trenkner ◽  
I. Viegas ◽  
L. C. Tavares ◽  
M. Palma ◽  
...  

AbstractBarramundi (Lates calcarifer) are a highly valued aquaculture species, and, as obligate carnivores, they have a demonstrated preference for dietary protein over lipid or starch to fuel energetic growth demands. In order to investigate how carnivorous fish regulate nutritional cues, we examined the metabolic effects of feeding two isoenergetic diets that contained different proportions of digestible protein or starch energy. Fish fed a high proportion of dietary starch energy had a higher proportion of liver SFA, but showed no change in plasma glucose levels, and few changes in the expression of genes regulating key hepatic metabolic pathways. Decreased activation of the mammalian target of rapamycin growth signalling cascade was consistent with decreased growth performance values. The fractional synthetic rate (lipogenesis), measured by TAG 2H-enrichment using 2H NMR, was significantly higher in barramundi fed with the starch diet compared with the protein diet (0·6 (se 0·1) v. 0·4 (se 0·1) % per d, respectively). Hepatic TAG-bound glycerol synthetic rates were much higher than other closely related fish such as sea bass, but were not significantly different (starch, 2·8 (se 0·3) v. protein, 3·4 (se 0·3) % per d), highlighting the role of glycerol as a metabolic intermediary and high TAG-FA cycling in barramundi. Overall, dietary starch significantly increased hepatic TAG through increased lipogenesis. Compared with other fish, barramundi possess a unique mechanism to metabolise dietary carbohydrates and this knowledge may define ways to improve performance of advanced formulated feeds.


2016 ◽  
Vol 31 (1) ◽  
pp. 68-72 ◽  
Author(s):  
Touraj Mahmoudi ◽  
Keivan Majidzadeh-A ◽  
Khatoon Karimi ◽  
Hamid Farahani ◽  
Reza Dabiri ◽  
...  

Background Given the major role of obesity and insulin resistance (IR) in colorectal cancer (CRC), we investigated whether genetic variants in ghrelin ( GHRL), resistin ( RETN) and insulin receptor substrate 1 ( IRS1) were associated with CRC risk. Methods This study was conducted as a case-control study, and 750 subjects, including 438 controls and 312 patients with CRC, were enrolled and genotyped using the PCR-RFLP method. Results No significant differences were observed for GHRL (rs696217), RETN (rs3745367) and IRS1 (rs1801278, Gly972Arg or G972R) gene variants between the cases and controls. However, the IRS1 G972R R allele compared with the G allele and the G972R RR+GR genotype compared with the GG genotype appeared to be markers of decreased CRC susceptibility in the overweight/obese subjects (p = 0.024; odds ratio [OR] = 0.42, 95% confidence interval [95% CI], 0.20-0.91; and p = 0.048; OR = 0.42, 95% CI, 0.17-0.99, respectively). Furthermore, the R allele and RR+GR genotype were also associated with decreased risks for obesity in the patients with CRC (p = 0.007; OR = 0.35, 95% CI, 0.15-0.77; and p = 0.015; OR = 0.35, 95% CI, 0.15-0.72, respectively). Conclusions In accordance with previous studies, our findings suggest that the IRS1 G972R R allele and RR+GR genotype have protective effects for CRC in overweight/obese patients and for obesity in patients with CRC. Nevertheless, further studies are required to confirm these findings.


Author(s):  
Hanaa H. Ahmed ◽  
Fatehya M Metwally ◽  
Hend Rashad ◽  
Asmaa M Zaazaa

<p>ABSTRACT<br />Objective: The goal of the present study was to examine the viability of Morus alba (M. alba) ethanolic extract in repression of obesity-associated<br />hepatic steatosis and related metabolic disorder; dyslipidemia, hyperinsulinemia, and glycemic status.<br />Methods: Adult female albino rats were randomly assigned into four groups, eight rats each as follows: Group (1) control group received standard<br />rodent diet for 24 weeks. The other three groups administered high cholesterol diet for 12 weeks and served as obese group, M. alba-treated group,<br />and simvastatin-treated group.<br />Results: The current results showed an increment in thoracic circumference (TCX) and abdominal circumferences (AC) as well as body mass index<br />(BMI) in obese group. In addition, dyslipidemia, hyperinsulinemia, hyperglycemia, and insulin resistance have been elucidated in obese group.<br />Moreover, hepatic malondialdehyde (MDA), nitric oxide (NO), serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), and bilirubin<br />values were significantly increased in obese groups versus control group. On the other hand, administration of ethanolic extract of Morus alba or<br />simvastatin could significantly lessen BMI and in addition to improve dyslipidemia in obese group. Glucose, insulin levels, and insulin resistance value<br />in serum samples demonstrated a significant reduction in obese group upon treatment with M. alba ethanolic extract or simvastatin. Furthermore,<br />noticeable depletion in hepatic MDA, NO contents, serum ALT, AST activities, and serum bilirubin level was recorded as a result of treatment with<br />either ethanolic extract of M. alba or simvastatin. Histopathological examination of liver tissue showed ballooning degeneration in the hepatocytes<br />(hepatic steatosis) associated with inflammatory cells penetration in portal zone in obese group. Meanwhile, the treatment of obese groups with<br />ethanolic extract of M. alba or simvastatin was found to restore the structural organization of the liver.<br />Conclusion: The present findings provide a novel aspect for understanding of the role of M. alba against obesity-associated liver diseases and related<br />metabolic disorder. The mechanisms underlying these effects seem to depend on the hypolipidemic potential, anti-inflammatory property, and<br />antioxidant activity of its phytochemicals.<br />Keywords: Obesity, Morus alba, Dyslipidemia, Hyperinsulinemia, Hyperglycemia, Hepatic steatosis.</p>


Sign in / Sign up

Export Citation Format

Share Document