scholarly journals Three-dimensional morphometric analysis of the coracohumeral distance using magnetic resonance imaging

2017 ◽  
Vol 9 (1) ◽  
Author(s):  
Taku Hatta ◽  
Nobuyuki Yamamoto ◽  
Hirotaka Sano ◽  
Yasushi Omori ◽  
Kazuomi Sugamoto ◽  
...  

There have been no studies investigating three-dimensional (3D) alteration of the coracohumeral distance (CHD) associated with shoulder motion. The aim of this study was to investigate the change of 3D-CHD with the arm in flexion/internal rotation and horizontal adduction. Six intact shoulders of four healthy volunteers were obtained for this study. MRI was taken in four arm positions: with the arm in internal rotation at 0°, 45°, and 90° of flexion, and 90° of flexion with maximum horizontal adduction. Using a motion analysis system, 3D models of the coracoid process and proximal humerus were created from MRI data. The CHD among the four positions were compared, and the closest part of coracoid process to the proximal humerus was also assessed. 3D-CHD significantly decreased with the arm in 90° of flexion and in 90° of flexion with horizontal adduction comparing with that in 0° flexion (P&lt;0.05). In all subjects, lateral part of the coracoid process was the closest to the proximal humerus in these positions. <em>In vivo</em> quasi-static motion analysis revealed that the 3D-CHD was narrower in the arm position of flexion with horizontal abduction than that in 0° flexion. The lateral part on the coracoid process should be considered to be closest to the proximal humerus during the motion.

Author(s):  
Hwai-Ting Lin ◽  
Yu-Chuan Lin ◽  
You-Li Chou ◽  
Hung-Chien Wu ◽  
Rong-Tyai Wang ◽  
...  

Previous studies have reported that pitchers with glenohumeral internal rotation deficit (GIRD) may increase the risk of shoulder injury. However, limited information is available regarding the specific effects of GIRD in baseball pitching. The purpose of this study was to investigate whether baseball pitchers with GIRD change their pitching mechanism. Fifteen baseball pitchers with GIRD and 15 pitchers without GIRD were recruited from university or senior high-school teams. A three-dimensional motion analysis system (Eagle System, Motion Analysis Corporation, Santa Rosa, CA, USA) was used to capture the pitching motion while performing fastball pitches. The kinematics and kinetics of the throwing shoulder and trunk were analyzed based on motion captured data. The Mann–Whitney U test was used to test the differences of the analyzed parameters between two groups. At the instant of ball release, the GIRD group showed lower shoulder external rotation and trunk rotation, and larger shoulder horizontal adduction. In addition, the GIRD group exhibited a significantly larger shoulder inferior force in the cocking and acceleration phase, and a significantly larger internal rotation torque in the acceleration phase. The present results suggested that pitchers with GIRD need stretch training to enlarge joint range of motion, and to improve trunk strength and flexibility to alleviate potential problems associated with pitching in GIRD pitchers.


1997 ◽  
Vol 10 (4) ◽  
pp. 329???338 ◽  
Author(s):  
Xue-Cheng Liu ◽  
Guy Fabry ◽  
Luc Labey ◽  
Luc Van Den Berghe ◽  
Remi Van Audekercke ◽  
...  

Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1242
Author(s):  
Georg Haider ◽  
Ursula Schulz ◽  
Nikola Katic ◽  
Christian Peham ◽  
Gilles Dupré

Single-port access systems (SPASs) are currently used in human and veterinary surgeries. However, they pose technical challenges, such as instrument crowding, intra- and extracorporeal instrument collision, and reduced maneuverability. Studies comparing the maneuverability of the scopes and instruments in different SPASs are lacking. This study aimed to compare the maneuverability of three different SPASs: the Covidien SILS-port, Storz Endocone, and glove port. A clear acrylic box with artificial skin placed at the bottom was used to mimic the abdominal wall and cavity. The three SPASs were placed from below, and a 10-mm endoscope and 5-mm instrument were introduced. A motion analysis system consisting of 18 cameras and motion analysis software were used to track the movement of the endoscope and instrument, to determine the volume of the cone-shaped, three-dimensional figures over which movement was possible, with higher values indicating greater maneuverability. The Mann–Whitney U test was used for the analysis. The maneuverability of the endoscope alone was significantly higher in the glove port system than in the other two SPASs. When inserting an additional instrument, the maneuverability significantly decreased in the SILS-port and Endocone, but not in the glove port. The highest maneuverability overall was found in the glove port.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Phob Ganokroj ◽  
Nuchanun Sompornpanich ◽  
Pichitpol Kerdsomnuek ◽  
Bavornrat Vanadurongwan ◽  
Pisit Lertwanich

Abstract Background Measurement of hip rotation is a crucial clinical parameter for the identification of hip problems and the monitoring of symptoms. The objective of this study was to determine whether the use of two smartphone applications is valid and reliable for the measurement of hip rotation. Methods An experimental, cross-sectional study was undertaken to assess passive hip internal and external rotation in three positions by two examiners. The hip rotational angles were measured by a smartphone clinometer application in the sitting and prone positions, and by a smartphone compass application in the supine position; their results were compared with those of the standard, three-dimensional, motion analysis system. The validities and inter-rater and intra-rater reliabilities of the smartphone applications were evaluated. Results The study involved 24 participants. The validities were good to excellent for the internal rotation angles in all positions (ICC 0.81–0.94), good for the external rotation angles in the prone position (ICC 0.79), and fair for the sitting and supine positions (ICC 0.70–0.73). The measurement of the hip internal rotation in the supine position had the highest ICC value of 0.94 (0.91, 0.96). The two smartphone applications showed good-to-excellent intra-rater reliability, but good-to-excellent inter-rater reliability for only three of the six positions (two other positions had fair reliability, while one position demonstrated poor reliability). Conclusions The two smartphone applications have good-to-excellent validity and intra-rater reliability, but only fair-to-good inter-rater reliability for the measurement of the hip rotational angle. The most valid hip rotational position in this study was the supine IR angle measurement, while the lowest validity was the ER angle measurement in the sitting position. The smartphone application is one of the practical measurements in hip rotational angles. Trial registration Number 20181022003 at the Thai Clinical Trials Registry (http://www.clinicaltrials.in.th) which was retrospectively registered at 2018-10-18 15:30:29.


Author(s):  
Lauren Marshall ◽  
Isabel Löwstedt ◽  
Paul Gatenholm ◽  
Joel Berry

The objective of this study was to create 3D engineered tissue models to accelerate identification of safe and efficacious breast cancer drug therapies. It is expected that this platform will dramatically reduce the time and costs associated with development and regulatory approval of anti-cancer therapies, currently a multi-billion dollar endeavor [1]. Existing two-dimensional (2D) in vitro and in vivo animal studies required for identification of effective cancer therapies account for much of the high costs of anti-cancer medications and health insurance premiums borne by patients, many of whom cannot afford it. An emerging paradigm in pharmaceutical drug development is the use of three-dimensional (3D) cell/biomaterial models that will accurately screen novel therapeutic compounds, repurpose existing compounds and terminate ineffective ones. In particular, identification of effective chemotherapies for breast cancer are anticipated to occur more quickly in 3D in vitro models than 2D in vitro environments and in vivo animal models, neither of which accurately mimic natural human tumor environments [2]. Moreover, these 3D models can be multi-cellular and designed with extracellular matrix (ECM) function and mechanical properties similar to that of natural in vivo cancer environments [3].


2020 ◽  
Vol 21 (15) ◽  
pp. 5499
Author(s):  
Hannah L. Smith ◽  
Stephen A. Beers ◽  
Juliet C. Gray ◽  
Janos M. Kanczler

Treatment for osteosarcoma (OS) has been largely unchanged for several decades, with typical therapies being a mixture of chemotherapy and surgery. Although therapeutic targets and products against cancer are being continually developed, only a limited number have proved therapeutically active in OS. Thus, the understanding of the OS microenvironment and its interactions are becoming more important in developing new therapies. Three-dimensional (3D) models are important tools in increasing our understanding of complex mechanisms and interactions, such as in OS. In this review, in vivo animal models, in vitro 3D models and in ovo chorioallantoic membrane (CAM) models, are evaluated and discussed as to their contribution in understanding the progressive nature of OS, and cancer research. We aim to provide insight and prospective future directions into the potential translation of 3D models in OS.


2020 ◽  
Vol 33 (5) ◽  
pp. 761-767
Author(s):  
Yongwook Kim ◽  
Seungmook Kang

BACKGROUND: Few studies have explored the relationship between muscle strength, range of motion (ROM), and balance in the horizontal plane of the hip joint using three-dimensional (3D) motion analysis. OBJECTIVE: We investigate the relationships of hip internal rotation (IR) and external rotation (ER) ROM, measured using a 3D motion capture system, with hip internal and external rotator strength and single-leg standing balance. METHODS: The participants were 40 healthy adults. Kinematic data on hip ROM were collected using an eight-camera motion analysis system. Hip rotational strength measurements were obtained using hand-held isometric dynamometry. A Single-leg standing test and a pendular test were conducted to evaluate static and dynamic balance ability using BioRescue. RESULTS: Significant correlations were found between hip strength and each variable measured during hip ROM assessments (p< 0.05). Significant positive correlations were found between the hip IR/ER strength ratio and the IR/ER ROM ratio (r= 0.72, p< 0.01). The subgroup with a normal IR/ER ratio of hip rotator strength and ROM showed significantly better dynamic balance ability than the subgroup with a hip rotator muscle imbalance (p< 0.05). CONCLUSIONS: There is a significant relationship between hip IR/ER strength and IR/ER ROM with a normal hip IR/ER strength and ROM ratio positively affecting dynamic balance ability.


Sign in / Sign up

Export Citation Format

Share Document