scholarly journals Molecular characterisation of multidrug-resistant Pseudomonas aeruginosa from a private hospital in Durban, South Africa

2018 ◽  
Vol 33 (2) ◽  
pp. 38-41 ◽  
Author(s):  
Cosmos B. Adjei ◽  
Usha Govinden ◽  
Krishnee Moodley ◽  
Sabiha Y. Essack

Background: Multi-drug resistant Pseudomonas aeruginosa pose a clinical challenge globally. This study delineated the molecular mechanisms of resistance to β-lactam antibiotics in multidrug-resistant P. aeruginosa isolated from a single private hospital in Durban, South Africa and ascertained clonality with regard to the isolates carrying β-lactamase genes.Methods: Seventeen P. aeruginosa isolates recovered from sputum, urine, catheter tips, pus swabs, nasal swabs and endotracheal aspirates underwent MIC determination, and phenotypic screening using the Double Disk Synergy Test (DDST) and Modified Hodge Test (MHT) to identify putative extended-spectrum β-lactamases (ESBLs), metallo-β-lactamases and other carbapenemases. Selected β-lactamase encoding genes were genotypically confirmed by PCR and sequencing. REP-PCR was conducted to determine the clonal relatedness of the 11 isolates carrying β-lactamase genes. Results: Sixteen isolates (94%) were resistant to aztreonam and piperacillin, 15 isolates (88%) were resistant to imipenem and ticarcillin, 14 (82%) were resistant to meropenem, and 13 isolates (76%) were resistant to ceftazidime and piperacillin/tazobactam. Resistance to ciprofloxacin and amikacin were 82% and 29% respectively. Of the 17 isolates tested, GES-2, VIM-2 and OXA-21 were present in 10 (59%) four (24%) and one (6%) of the isolates respectively. Three of the isolates harboured both GES-2 and VIM-2 and one isolate harboured OXA-21 and VIM-2. REP-PCR revealed seven clusters with clusters A and F having two (18%) and four (36%) isolates respectively, while the remaining five isolates were unrelated.Conclusion: GES-2 and VIM-2 enzymes were predominantly responsible for carbapenemase resistance. Clones A and F intimated patient-to-patient spread within the ICU and surgical ICU. This apparent dissemination as well as the multi-drug resistance observed points to sub-optimal infection prevention and control and dwindling antibiotic treatment options for P. aeruginosa respectively in this institution.

2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Esmat Kamali ◽  
Ailar Jamali ◽  
Abdollah Ardebili ◽  
Freshteh Ezadi ◽  
Alireza Mohebbi

Abstract Objectives Pseudomonas aeruginosa is known as a leading cause of nosocomial infections worldwide. Antimicrobial resistance and biofilm production, as two main virulence factors of P. aeruginosa, are responsible for the persistence of prolonged infections. In this study, antimicrobial susceptibility pattern and phenotypic and genotypic characteristics of biofilm of P. aeruginosa were investigated. Results A total of 80 clinical P. aeruginosa isolates were obtained. Isolates showed resistance to all antibiotics with a rate from 12.5% (n = 10) against amikacin and piperacillin/tazobactam to 23.75% (n = 19) to levofloxacin. Multidrug-resistant P. aeruginosa accounted for 20% (n = 16). 83.75% (n = 67) of isolates showed biofilm phenotype. All three biofilm-related genes were found simultaneously in 87.5% (n = 70) of P. aeruginosa and 13.5% (n = 10) of the isolates had none of the genes tested. From the results of the present study, combination therapy including an anti-pseudomonal beta-lactam (piperacillin/tazobactam or ceftazidime) and an aminoglycoside or carbapenems (imipenem, meropenem) with fluoroquinolones in conjunction with an aminoglycoside can be used against Pseudomonas infections. However, reasonable antimicrobial use and high standards of infection prevention and control are essential to prevent further development of antimicrobial resistance. Combination strategies based on the proper anti-pseudomonal antibiotics along with anti-biofilm agents can also be selected to eradicate biofilm-associated infections.


Pathogens ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 91
Author(s):  
Kevin Maclean ◽  
Fernande Olpa J Pankendem Njamo ◽  
Mahloro Hope Serepa-Dlamini ◽  
Kulsum Kondiah ◽  
Ezekiel Green

SCUBA divers are predisposed to otitis externa caused by Pseudomonas aeruginosa, which is becoming increasingly multi-drug resistant (MDR). The present work assessed the antibiotic resistance profiles of P. aeruginosa obtained from SCUBA divers and their environment in Sodwana Bay, South Africa. Bacterial isolates from a total of 137 random water and ear swab samples were identified using biochemical and molecular methods. P. aeruginosa strains were further evaluated for antibiotic susceptibility using the Kirby–Bauer assay. Double disk synergy test (DDST) to confirm metallo-β-lactamase (MBL) production and PCR amplification of specific antibiotic resistance genes was performed. All (100%) 22 P. aeruginosa isolates recovered were resistant to 6 of the β-lactams tested including imipenem but exhibited susceptibility to trimethoprim–sulfamethoxazole. MBL production was observed in 77% of isolates while the most prevalent extended-spectrum β-lactamase (ESBL) genes present included blaAmpC (86.9%) followed by blaTEM (82.6%). Sulfonamide resistance was largely encoded by sul1 (63.6%) and sul2 (77.3%) genes with a high abundance of class 1 integrons (77.3%) of which 18.2% carried both Intl1 and Intl2. P. aeruginosa found in Sodwana Bay exhibits multi-drug resistance (MDRce) to several pharmaceutically important drugs with the potential to transfer antibiotic resistance to other bacteria if the judicious use of antibiotics for their treatment is not practiced.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mojisola C. Hosu ◽  
Sandeep D. Vasaikar ◽  
Grace E. Okuthe ◽  
Teke Apalata

AbstractThe proliferation of extended spectrum beta-lactamase (ESBL) producing Pseudomonas aeruginosa represent a major public health threat. In this study, we evaluated the antimicrobial resistance patterns of P. aeruginosa strains and characterized the ESBLs and Metallo- β-lactamases (MBL) produced. Strains of P. aeruginosa cultured from patients who attended Nelson Mandela Academic Hospital and other clinics in the four district municipalities of the Eastern Cape between August 2017 and May 2019 were identified; antimicrobial susceptibility testing was carried out against thirteen clinically relevant antibiotics using the BioMérieux VITEK 2 and confirmed by Beckman autoSCAN-4 System. Real-time PCR was done using Roche Light Cycler 2.0 to detect the presence of ESBLs; blaSHV, blaTEM and blaCTX-M genes; and MBLs; blaIMP, blaVIM. Strains of P. aeruginosa demonstrated resistance to wide-ranging clinically relevant antibiotics including piperacillin (64.2%), followed by aztreonam (57.8%), cefepime (51.5%), ceftazidime (51.0%), piperacillin/tazobactam (50.5%), and imipenem (46.6%). A total of 75 (36.8%) multidrug-resistant (MDR) strains were observed of the total pool of isolates. The blaTEM, blaSHV and blaCTX-M was detected in 79.3%, 69.5% and 31.7% isolates (n = 82), respectively. The blaIMP was detected in 1.25% while no blaVIM was detected in any of the strains tested. The study showed a high rate of MDR P. aeruginosa in our setting. The vast majority of these resistant strains carried blaTEM and blaSHV genes. Continuous monitoring of antimicrobial resistance and strict compliance towards infection prevention and control practices are the best defence against spread of MDR P. aeruginosa.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Saiendhra Vasudevan Moodley ◽  
Muzimkhulu Zungu ◽  
Molebogeng Malotle ◽  
Kuku Voyi ◽  
Nico Claassen ◽  
...  

Abstract Background Health workers are crucial to the successful implementation of infection prevention and control strategies to limit the transmission of SARS-CoV-2 at healthcare facilities. The aim of our study was to determine SARS-CoV-2 infection prevention and control knowledge and attitudes of frontline health workers in four provinces of South Africa as well as explore some elements of health worker and health facility infection prevention and control practices. Methods A cross-sectional study design was utilised. The study population comprised both clinical and non-clinical staff working in casualty departments, outpatient departments, and entrance points of health facilities. A structured self-administered questionnaire was developed using the World Health Organization guidance as the basis for the knowledge questions. COVID-19 protocols were observed during data collection. Results A total of 286 health workers from 47 health facilities at different levels of care participated in the survey. The mean score on the 10 knowledge items was 6.3 (SD = 1.6). Approximately two-thirds of participants (67.4%) answered six or more questions correctly while less than a quarter of all participants (24.1%) managed to score eight or more. A knowledge score of 8 or more was significantly associated with occupational category (being either a medical doctor or nurse), age (< 40 years) and level of hospital (tertiary level). Only half of participants (50.7%) felt adequately prepared to deal with patients with COVD-19 at the time of the survey. The health workers displaying attitudes that would put themselves or others at risk were in the minority. Only 55.6% of participants had received infection prevention and control training. Some participants indicated they did not have access to medical masks (11.8%) and gloves (9.9%) in their departments. Conclusions The attitudes of participants reflected a willingness to engage in appropriate SARS-CoV-2 infection prevention and control practices as well as a commitment to be involved in COVID-19 patient care. Ensuring adequate infection prevention and control training for all staff and universal access to appropriate PPE were identified as key areas that needed to be addressed. Interim and final reports which identified key shortcomings that needed to be addressed were provided to the relevant provincial departments of health.


2006 ◽  
Vol 50 (9) ◽  
pp. 2990-2995 ◽  
Author(s):  
Xiaofei Jiang ◽  
Zhe Zhang ◽  
Min Li ◽  
Danqiu Zhou ◽  
Feiyi Ruan ◽  
...  

ABSTRACT With the occurrence of extended-spectrum β-lactamases (ESBLs) in Pseudomonas aeruginosa being increasingly reported worldwide, there is a need for a reliable test to detect ESBLs in clinical isolates of P. aeruginosa. In our study, a total of 75 clinical isolates of P. aeruginosa were studied. Nitrocefin tests were performed to detect the β-lactamase enzyme; isoelectric focusing electrophoresis, PCR, and PCR product sequencing were designed to further characterize the contained ESBLs. Various ESBL-screening methods were designed to compare the reliabilities of detecting ESBLs in clinical isolates of P. aeruginosa whose β-lactamases were well characterized. Thirty-four of 36 multidrug-resistant P. aeruginosa clinical isolates were positive for ESBLs. bla VEB-3 was the most prevalent ESBL gene in P. aeruginosa in our study. Among the total of 34 isolates that were considered ESBL producers, 20 strains were positive using conventional combined disk tests and 10 strains were positive using a conventional double-disk synergy test (DDST) with amoxicillin-clavulanate, expanded-spectrum cephalosporins, aztreonam, and cefepime. Modifications of the combined disk test and DDST, which consisted of shorter distances between disks (20 mm instead of 30 mm) and the use of three different plates that contained cloxacillin (200 μg/ml) alone, Phe-Arg β-naphthylamide dihydrochloride (MC-207,110; 20 μg/ml) alone, and both cloxacillin (200 μg/ml) and MC-207,110 (20 μg/ml) increased the sensitivity of the tests to 78.8%, 91.18%, 85.29%, and 97.06%.


2020 ◽  
Vol 8 (2) ◽  
pp. 191 ◽  
Author(s):  
Despoina Koulenti ◽  
Elena Xu ◽  
Andrew Song ◽  
Isaac Yin Sum Mok ◽  
Drosos E. Karageorgopoulos ◽  
...  

Antimicrobial agents are currently the mainstay of treatment for bacterial infections worldwide. However, due to the increased use of antimicrobials in both human and animal medicine, pathogens have now evolved to possess high levels of multi-drug resistance, leading to the persistence and spread of difficult-to-treat infections. Several current antibacterial agents active against Gram-positive bacteria will be rendered useless in the face of increasing resistance rates. There are several emerging antibiotics under development, some of which have been shown to be more effective with an improved safety profile than current treatment regimens against Gram-positive bacteria. We will extensively discuss these antibiotics under clinical development (phase I-III clinical trials) to combat Gram-positive bacteria, such as Staphylococcus aureus, Enterococcus faecium and Streptococcus pneumoniae. We will delve into the mechanism of actions, microbiological spectrum, and, where available, the pharmacokinetics, safety profile, and efficacy of these drugs, aiming to provide a comprehensive review to the involved stakeholders.


Sign in / Sign up

Export Citation Format

Share Document