scholarly journals Use of agricultural and agroindustrial residues as alternative adsorbents of manganese and iron in aqueous solution

Author(s):  
Fernanda Lansa Furlan ◽  
Nelson Consolin Filho ◽  
Marcilene Ferrari Barriquello Consolin ◽  
Morgana Suzsek Gonçalves ◽  
Patrícia Valderrama ◽  
...  

The increase in the volume of agricultural and agroindustrial waste, associated with improper disposal, is a growing worldwide problem. The recovery of those residues is of crucial importance, since it reduces environmental impacts, protects public health, and allows the addition of value to the materials. One of the ways of exploiting adsorbents is related to the capacity of some wastes to be used as alternative adsorbents in the efficient removal of microcontaminants in aqueous systems. This work assessed the use of agricultural and agroindustrial residues: maize straw, wheat straw, soybean straw and soybean hulls for the production of alternative adsorbents to remove iron (Fe) and manganese (Mn) in water. For each residue investigated, two different polymers were obtained for use as adsorbents, a natural polymer (cellulose/lignin) and an EDTA-modified polymer (ethylenediaminetetraacetic acid). The adsorbents were characterized through FTIR (Fourier transform infrared spectroscopy) and nitrogen content. To evaluate the efficiency of the adsorbents, kinetic tests in batch mode and determination of Lagergren pseudo-first and pseudo-second order kinetic constants were performed. The results found that the modified polymer obtained from soybean hulls (SHE) showed increased Fe (96%) and Mn (88%) removal rate, in which the pseudo-second order kinetic model presented closer results between the experimental adsorption rates and the calculated ones for the two microcontaminants under study. In general, the modified soybean hulls proved to be a promising alternative adsorbent for the removal of iron and manganese in water treatment.

2020 ◽  
Author(s):  
Eman Alabbad

Abstract Background Water contamination has increasingly become a significant problem affecting the welfare of living organisms perceived to be aquatic beneficiaries. The nature and origin of the contaminant always determines the purification techniques. The most common contaminants in wastewater include organic compounds such as dyes that must be eliminated to enhance water purity and safety.Result The results indicate that the removal of DY50 by the modified chitosan was affected by the solution pH, sorbent dosage, initial DY50 concentration, contact time, and temperature. The experimental data were fitted to the Langmuir, Freundlich, and Temkin isotherms, and Langmuir isotherm showed the best fit. The kinetic data were fitted to the pseudo-first-order and pseudo-second-order rate equations. The removal rate was 97.9% by chemisorption components after the three hours at about 0.05 g of sorbent dose and 100 ppm of the Direct Yellow 50 dye initial concentration. The adsorption behavior of the modified chitosan for the removal of DY50 was well-described using the pseudo-second-order kinetic model, Intraparticle diffusion analysis was also conducted. The thermodynamic properties such as free energy (∆G), enthalpy (∆H), and entropy (∆S), in addition to the intra-particle diffusion rate were similarly defined.Conclusion The pH, initial DY50 concentration, sorbent dosage, adsorption temperature, and contact time had a significant effect on the adsorption of DY50 by chitosan-iso-vanillin.


Processes ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 852
Author(s):  
Sicong Yao ◽  
Massimiliano Fabbricino ◽  
Marco Race ◽  
Alberto Ferraro ◽  
Ludovico Pontoni ◽  
...  

Digestate, as an urban solid waste, was considered as an innovative adsorbent for colorant polluted wastewater. Batch adsorption experiments were carried out using digestate as an adsorbent material to remove various dyes belonging to different categories. The removal rate and adsorption capacity of dyes were evaluated and the dose of digestate, contact time, and initial dye concentration were studied. The maximum removal rate was approximately 96% for Methylene Blue. The equilibrium time for the Methylene Blue was 4 h, while for other dyes, a longer contact time was required to reach the equilibrium. The suspicion of colloidal matter release into the solution from solid fraction of the digestate led to the investigation of the consequence of a washing step of the digestate adsorbent upstream the adsorption experiment. Washed and not washed adsorbents were tested and the differences between them in terms of dye removal were compared. Moreover, experimental data were fitted by pseudo-first order, pseudo-second order, and intra-partial diffusion kinetic models as well as Langmuir, Freundlich, and Sips isotherm models. The results from fitted models showed that the adsorption of various dyes onto the digestate was mostly well fitted by the Langmuir isotherm and pseudo-second-order kinetic model.


2020 ◽  
Vol 7 (1) ◽  
pp. 16-25
Author(s):  
Eman A. Alabbad

Introduction: Water pollution is a serious issue in several countries. In addition, because of limited water resources, the recycling of wastewater is crucial. Consequently, new and effective sorbents are required to reduce the cost of wastewater treatment as well as to mitigate the health problems caused by water pollution. Methods: In this study, the removal of Methyl Orange (MO) dye from wastewater using a chitosan-iso-vanillin polymer was evaluated. The removal of MO from an aqueous solution was studied in a batch system, using the modified chitosan polymer. Results: The results indicate that the removal of MO by the modified chitosan was affected by the solution pH, sorbent dosage, initial MO concentration, contact time, and temperature. The experimental data were fitted to the Langmuir, Freundlich, and Temkin isotherms, and Freundlich isotherm showed the best fit. The kinetic data were fitted to the pseudo-first-order and pseudo-second-order rate equations. Thus, the removal of MO was controlled via chemisorption, and the removal rate was 97.9% after 3 h at an initial MO concentration of 100 ppm and a sorbent dose of 0.05 g. The adsorption behavior of the modified chitosan for the removal of MO was well-described using the pseudo-second-order kinetic model. Intraparticle diffusion analysis was also conducted, and the thermodynamic properties, including entropy (∆S), enthalpy (∆H), and free energy (∆G), were determined. Conclusion: The pH, initial MO concentration, sorbent dosage, adsorption temperature, and contact time had a significant effect on the adsorption of MO by chitosan-iso-vanillin.


2021 ◽  
Author(s):  
An Wang ◽  
Boyuan Li ◽  
Yatong Wang ◽  
Xiaoran Sun ◽  
Simeng Bian ◽  
...  

Abstract In this study, a carbon composite based on humic acid (CAH) was synthesized by partially carbonizing humic acid by using aluminum sulfate with a mass ratio of 2:3 and a leavening agent oxalic acid with a fixed mass. The morphology and microstructure of the sample are measured by scanning electron microscope (SEM), x-ray diffractometer (XRD), thermal analysis (TG-DSC), Raman spectroscopy (Raman), X-ray photoelectron spectroscopy (XPS) and Fourier Transform infrared spectroscopy (FT-IR) is used to analyze the composition and structure of materials. The BET surface area of CAH is determined to be 149 m²/g. Congo red was used as a model adsorbent for adsorption research. When the dye concentration is 400 mg/L and 10mg of adsorbent powder is used. CAH has the highest dye removal rate of adsorption capacity. The pseudo-first-order and pseudo-second-order kinetic models were used to describe the kinetic data and the Langmuir and Freundlich models were applied to describe the adsorption isotherms. The results showed that the equilibrium adsorption data were found to fit better to the Langmuir adsorption model and the kinetic process of adsorption could be described by the pseudo-second-order model. Compared with humic acid, CAH composite materials can effectively improve the adsorption rate and adsorption capacity of Congo red, and the adsorption capacity is as high as 3986mg/g within 30 minutes. In addition, considering the cost issue, this study selected low-cost humic acid as a carbon source to prepare composite materials, emphasizing the importance of cost.


2016 ◽  
Vol 4 (2) ◽  
pp. 105-112
Author(s):  
Lalchhing puii ◽  
◽  
Seung-Mok Lee ◽  
Diwakar Tiwari ◽  
◽  
...  

A mesoporous silica was synthesized by annealing (3-Aminopropyl) triethoxysilane grafted chitosan at 800˚C. The mesoporous silica was characterized by the XRD (X-ray diffraction) analysis. The BET specific surface area and pore size of silica was found to be 178.42 m2/g and 4.13 nm. The mesoporous silica was then employed for the efficient remediation of aqueous solutions contaminated with Cu(II) under batch and column reactor operations. The mesoporous silica showed extremely high per cent removal of Cu(II) at wide pH range i.e., pH ~2.0 to 7.0. Relatively a fast uptake of Cu(II) was occurred and high percentage removal was obtained at initial concentrations studied from 1.0 to 15.0 mg/L. The equilibrium state sorption data were utilized for the Langmuir and Freundlich adsorption isotherm studies. Moreover, the effect of an increase in background electrolyte concentrations from 0.0001 to 0.1 mol/L NaNO3 was assessed for the uptake of Cu(II) by mesoporous silica. The equilibrium sorption was achieved within 240 min of contact and the kinetic data is best fitted to the pseudo-second-order and fractal like pseudo-second-order kinetic models. In addition, the mesoporous silica was used for dynamic studies under column reactor operations. The breakthrough curve was then used for the non-linear fitting of the Thomas equation and the loading capacity of the column for Cu(II) was estimated.


2011 ◽  
Vol 396-398 ◽  
pp. 75-87
Author(s):  
Zai Fu Yang ◽  
Xiao Jing Yang ◽  
Li Hong Sun ◽  
Lian Lian Xu

ABSTRACT: Cation adsorbent was prepared from the Solidago Canadensis(which are abandoned agricultural land of alien invasive plants)by Sulfuric acid esterification modified , isoamyl alcohol as reaction medium. Design L934 orthogonal experiment, the Solidago canadensis cation exchange adsorbent, the optimal preparation conditions. Experimental results show that at 15°C, concentrated sulfuric acid and amyl alcohol volume ratio of 5:6 obtained under conditions of Solidago canadensis cation exchange adsorbent for Pb(II) exchange best. The experimental results of Pb(II) adsorption onto the Solidago Canadensis based cation adsorbent showed that the best conditions are: the initial pH 5, the concentration of Pb(II) 300mg/L,the dosage of cation adsorbent 1.2mg/L and adsorption time 3h. The adsorption data were analyzed by using pseudo-first-order and pseudo-second-order kinetic models were found to follow the pseudo-second-order kinetic model.


Author(s):  
Mohamed Nasser Sahmoune ◽  
Krim Louhab ◽  
Aissa Boukhiar

Dead streptomyces rimosus was found to be an effective biosorbent for the removal of chromium from industrial tanning effluents. A sorption level of 65 mg/g was observed at pH 4.8 while the precipitation effect augmented this value at a higher pH range. Chromium desorption increased with decreasing desorption agents pH (including HCl and H2SO4) to a maximum value of 95% at approximately zero pH. The biosorption data of trivalent chromium by streptomyces rimosus has been used for kinetic studies based on fractional power, Elovich, pseudo-first order and pseudo-second order rate expressions. The time-dependent Cr (III) biosorption data were well-described by a pseudo-second-order kinetic model. The intraparticle diffusion is not the rate-limiting step for the whole reaction. It was found that the biosorption equilibrium data fit well with the Langmuir model.


2019 ◽  
Vol 233 (9) ◽  
pp. 1275-1292 ◽  
Author(s):  
Atta ul Haq ◽  
Muhammad Rasul Jan ◽  
Jasmin Shah ◽  
Maria Sadia ◽  
Muhammad Saeed

Abstract The presence of heavy metals in water causes serious problems and their treatment before incorporating into the water body is a challenge for researchers. The present study was conducted to compare the sorption study of Ni (II) using silica gel, amberlite IR-120 and sawdust of mulberry wood in batch system under the influence of pH, initial Ni (II) concentration and contact time. It was observed that sorption process was depending upon pH and maximum sorption was achieved at pH 7.0. Kinetic data were well fitted into pseudo-second order kinetic model due to high R2 values and closeness of experimental sorption capacity and calculated sorption capacity of pseudo-second order. Isotherms study showed that Langmuir is one of the most suitable choices to explain sorption data due to high R2 values. The monolayer sorption capacities of silica gel, amberlite IR-120 and sawdust were found to be 33.33, 25.19, and 33.67 mg g−1, respectively. Desorption study revealed that NaCl is one of the most appropriate desorbent. It may be concluded from this study that sawdust is a suitable sorbent due to low cost, abundant availability and recycling of the materials for further study.


2010 ◽  
Vol 5 (1) ◽  
Author(s):  
Hülya Karaca ◽  
Turgay Tay ◽  
Merih Kıvanç

The biosorption of lead ions (Pb2+) onto lyophilized fungus Aspergillus niveus was investigated in aqueous solutions in a batch system with respect to pH, contact time and initial concentration of the ions at 30 °C. The maximum adsorption capacity of lyophilized A. niveus was found to be 92.6 mg g−1 at pH 5.1 and the biosorption equilibrium was established about in 30 min. The adsorption capacity obtained is one of the highest value among those reported in the literature. The kinetic data were analyzed using the pseudo-first-order kinetic, pseudo-second-order kinetic, and intraparticle diffusion equations. Kinetic parameters, such as rate constants, equilibrium adsorption capacities, and related correlation coefficients for the kinetic models were calculated and discussed. It was found that the adsorption of lead ions onto lyophilized A. niveus biomass fit the pseudo-second-order kinetic model well. The Langmuir and Freundlich isotherm parameters for the lead ion adsorption were applied and the Langmuir model agreed better with the adsorption of lead ions onto lyophilized A. niveus.


Author(s):  
Tasrina R. Choudhury ◽  
Snahasish Bhowmik ◽  
M. S. Rahman ◽  
Mithun R. Nath ◽  
F. N. Jahan ◽  
...  

Sawdust supported nano-zerovalent (NZVI/SD) iron was synthesized by treating sawdust with ferrous sulphate followed by reduction with NaBH4. The NZVI/SD was characterized by SEM, XRD, FTIR and Chemical method. Adsorption of As (III) by NZVI/SD was investigated and the maximum uptake of As (III) was found at pH value of 7.74 and equilibrium time of 3 hrs. The adsorption isotherm modelling revealed that the equilibrium adsorption data were better fitted with the Langmuir isotherm model compared with the Freundlich Isotherm model. This study revealed that the maximum As (III) ions adsorption capacity was found to be 12.66 mg/g for using NZVI/SD adsorbent. However, the kinetics data were tested by pseudo-first-order and pseudo-second-order kinetic models; and it was observed that the adsorption data could be well fitted with pseudo-second-order kinetics for As (III) adsorption onto NZVI/SD depending on both adsorbate concentration and adsorption sites. The result of this study suggested that NZVI/SD could be developed as a prominent environment-friendly adsorbent for the removal of As (III) ions from aqueous systems.


Sign in / Sign up

Export Citation Format

Share Document