scholarly journals The Timing Effects of Soy Protein Intake on Mice Gut Microbiota

Nutrients ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 87 ◽  
Author(s):  
Konomi Tamura ◽  
Hiroyuki Sasaki ◽  
Kazuto Shiga ◽  
Hiroki Miyakawa ◽  
Shigenobu Shibata

Soy protein intake is known to cause microbiota changes. While there are some reports about the effect of soy protein intake on gut microbiota and lipid metabolism, effective timing of soy protein intake has not been investigated. In this study, we examined the effect of soy protein intake timing on microbiota. Mice were fed twice a day, in the morning and evening, to compare the effect of soy protein intake in the morning with that in the evening. Mice were divided into three groups: mice fed only casein protein, mice fed soy protein in the morning, and mice fed soy protein in the evening under high-fat diet conditions. They were kept under the experimental condition for two weeks and were sacrificed afterward. We measured cecal pH and collected cecal contents and feces. Short-chain fatty acids (SCFAs) from cecal contents were measured by gas chromatography. The microbiota was analyzed by sequencing 16S rRNA genes from feces. Soy protein intake whether in the morning or evening led to a greater microbiota diversity and a decrease in cecal pH resulting from SCFA production compared to casein intake. In addition, these effects were relatively stronger by morning soy protein intake. Therefore, soy protein intake in the morning may have relatively stronger effects on microbiota than that in the evening.

2021 ◽  
Vol 8 (5) ◽  
pp. 81
Author(s):  
Taemook Park ◽  
Jungho Yoon ◽  
Ahram Kim ◽  
Tatsuya Unno ◽  
Youngmin Yun

(1) Background: The large intestine of horses is an anaerobic fermentative chamber filled with fibrolytic bacteria that play essential roles in digesting and absorbing nutrients for energy production. Although Jeju horses are a prominent local breed in Korea, few studies have investigated the gut microbiota of Jeju horses; (2) Methods: This study performed sequencing of V3 and V4 hypervariable regions of the partial 16S rRNA genes obtained from horse fecal samples and compared the gut microbiota between Jeju and Thoroughbred horses. Thirty and 24 fecal samples were obtained from Jeju and Thoroughbred horses, respectively; (3) Results: The gut microbiota belonged to 23 phyla and 159 families. Firmicutes and Bacteroidetes were the most abundant and predominant phyla, followed by Verrucomicrobia, Euryachaeota, and Spirochaete. The ratio of Firmicutes to Bacteroidetes (F/B), which is known as a relevant marker of gut dysbiosis, was 1.84 for Jeju horses, whereas it was 1.76 for Thoroughbred horses. Moreover, at the genus level, 21 genera were significantly different between the Jeju and Thoroughbred horses (p < 0.05); (4) Conclusions: The Thoroughbred horse’s gut microbiotas had significantly higher diversity than the Jeju horses (p < 0.05). In addition, beneficial commensal bacteria that produce short-chain fatty acids thus providing a significant source of energy are also more abundant in Thoroughbred horses. These results provide novel information on the horse gut microbiota and insights for further studies related to the horse gut microbiota.


2006 ◽  
Vol 20 (4) ◽  
Author(s):  
Ivan Torre‐Villalvazo ◽  
Armando R Tovar ◽  
Nimbe Torres

2022 ◽  
Vol 25 (8) ◽  
pp. 864-873
Author(s):  
A. Y. Tikunov ◽  
A. N. Shvalov ◽  
V. V. Morozov ◽  
I. V. Babkin ◽  
G. V. Seledtsova ◽  
...  

To date, the association of an imbalance of the intestinal microbiota with various human diseases, including both diseases of the gastrointestinal tract and disorders of the immune system, has been shown. However, despite the huge amount of accumulated data, many key questions still remain unanswered. Given limited data on the composition of the gut microbiota in patients with ulcerative colitis (UC) and irritable bowel syndrome (IBS) from different parts of Siberia, as well as the lack of data on the gut microbiota of patients with bronchial asthma (BA), the aim of the study was to assess the biodiversity of the gut microbiota of patients with IBS, UC and BA in comparison with those of healthy volunteers (HV). In this study, a comparative assessment of the biodiversity and taxonomic structure of gut microbiome was conducted based on the sequencing of 16S rRNA genes obtained from fecal samples of patients with IBS, UC, BA and volunteers. Sequences of the Firmicutes and Bacteroidetes types dominated in all samples studied. The third most common in all samples were sequences of the Proteobacteria type, which contains pathogenic and opportunistic bacteria. Sequences of the Actinobacteria type were, on average, the fourth most common. The results showed the presence of dysbiosis in the samples from patients compared to the sample from HVs. The ratio of Firmicutes/Bacteroidetes was lower in the IBS and UC samples than in HV and higher the BA samples. In the samples from patients with intestinal diseases (IBS and UC), an increase in the proportion of sequences of the Bacteroidetes type and a decrease in the proportion of sequences of the Clostridia class, as well as the Ruminococcaceae, but not Erysipelotrichaceae family, were found. The IBS, UC, and BA samples had signif icantly more Proteobacteria sequences, including Methylobacterium, Sphingomonas, Parasutterella, Halomonas, Vibrio, as well as Escherichia spp. and Shigella spp. In the gut microbiota of adults with BA, a decrease in the proportion of Roseburia, Lachnospira, Veillonella sequences was detected, but the share of Faecalibacterium and Lactobacillus sequences was the same as in healthy individuals. A signif icant increase in the proportion of Halomonas and Vibrio sequences in the gut microbiota in patients with BA has been described for the f irst time.


2020 ◽  
Vol 11 ◽  
Author(s):  
Zhen Wang ◽  
Junfeng Lu ◽  
Jingwei Zhou ◽  
Weiwei Sun ◽  
Yang Qiu ◽  
...  

Obesity and related metabolic disorders are associated with intestinal microbiota dysbiosis, disrupted intestinal barrier and chronic inflammation. Shen-Yan-Fang-Shuai formula (SYFSF) is a traditional Chinese herbal formula composed of Astragali Radix, Radix Angelicae Sinensis, Rheum Officinale Baill, and four other herbs. In this study, we identified that SYFSF treatment prevented weight gain, low-grade inflammation and insulin resistance in high-fat diet (HFD)-fed mice. SYFSF also substantially improved gut barrier function, reduced metabolic endotoxemia, as well as systemic inflammation. Sequencing of 16S rRNA genes obtained from fecal samples demonstrated that SYFSF attenuated HFD-induced gut dysbiosis, seen an decreased Firmicutes to Bacteroidetes ratios. Microbial richness and diversity were also higher in the SYFSF-treated HFD group. Furthermore, similar therapeutic effects and changes in gut microbiota profile caused by SYFSF could be replicated by fecal microbiota transfer (FMT). Taken together, our study highlights the efficacy of SYFSF in preventing obesity and related metabolic disorders. Its therapeutic effect is associated with the modulation of gut microbiota, as a prebiotic.


2019 ◽  
Vol 3 (Supplement_1) ◽  
Author(s):  
Lucille Yanckello ◽  
Jared Hoffman ◽  
Ishita Parikh ◽  
Jessie Hoffman ◽  
Stefan Green ◽  
...  

Abstract Objectives The APOE4 allele is a genetic risk factor for certain diseases, due in part to alterations in lipid and glucose metabolism. The gut microbiota is also known to impact metabolic and can be beneficially modulated by prebiotics. Prebiotics are fermented into metabolites by the gut microbiota. These metabolites act as gut-brain axis components. However, the interaction of the APOE4 allele, gut microbiota, and prebiotics are unknown. The goal of the study was to use prebiotic diet to restore the gut microbiome of mice with human APOE4 (E4FAD) genes. We hypothesized that the microbial compositions of E4 mice fed inulin, compared to control fed, will correlate to metabolites being produced by the microbiome that confer benefit to host metabolism. Methods At 3 months of age the E4FAD mice were fed for 4 months with either control or inulin diet. We used 16S rRNA sequencing to determine gut microbiota diversity and species variations; non-targeted UPLC-MS/MS and GC-MS analysis was used to determine metabolic profiles of blood. Results The inulin fed mice showed a more beneficial microbial taxa profile than those mice that were control fed. Control mice showed higher levels of dimethylglycine, choline, creatine and the polyamine spermine. Higher levels of spermine, specifically, correlate to higher levels of the Proteobacteria which has been implicated in GI disorders. E4 inulin fed mice showed higher levels of bile acids, short chain fatty acids and metabolites involved in energy, increased levels of tryptophan metabolites and robust increases in sphingomyelins. Specifically in E4 inulin fed mice we saw increases in certain genera of bacteria, all of which have been implicated in being beneficial to the composition of the microbiome and producing one or more of the above mentioned metabolites. Conclusions We believe the disparities of microbial metabolite production between E4 inulin fed mice and E4 control fed mice can be attributed to differences in certain taxa that produce these metabolites, and that higher levels of these taxa are due to the dietary intervention of inulin. Despite the APOE4 allele increasing one's risk for certain diseases, we believe that beneficially modulating the gut microbiota may be one way to enhance host metabolism and decrease disease risk over time. Funding Sources NIH/NIDDK T323048107792, NIH/NIA R01AG054459, NIEHS/NIH P42ES007380. Supporting Tables, Images and/or Graphs


2006 ◽  
Vol 86 (4) ◽  
pp. 511-522 ◽  
Author(s):  
H. Namkung ◽  
J. Gong ◽  
H. Yu ◽  
C. F. M. de Lange

The effect of feeding pharmacological levels of zinc (Zn) and copper (Cu) to newly weaned piglets on growth performance, circulating cytokines levels and gut microbiota was investigated. One hundred eighty piglets [5.90 ± 0.18 kg body weight (BW); six pigs per pen] weaned at 16 to 19 d of age were fed diets containing 3000 ppm additional Zn, 250 ppm additional Cu or a control diet (150 ppm Zn, 15 ppm Cu) for 14 d post-weaning (weeks 1 and 2). Pigs were fed a control diet for an additional 2 wk. Pigs were injected intramuscularly on days 13 and 19 with either 75 μg kg-1 BW of coliform lipopolysaccharide (LPS) or an equivalent amount of saline. Blood samples were collected 3 h after LPS injection to measure plasma levels of cytokines and cortisol. Digesta of ileum and colon were collected from non-challenged pigs on days 14 and 28 to evaluate microbiota using conventional culturing methods and polymerase chain reaction and denaturing gradient gel electrophoresis (PCRDGGE) analysis of the 16S rRNA genes. There were no interactive effects of diet and LPS challenge on growth performance (P > 0.10). Compared with the control, high dietary Zn and Cu increased (P < 0.01) average daily gain (ADG) during weeks 1 (0.125, 0.091 vs. 0.074 kg; P < 0.05) and 2 (0.240, 0.270 vs. 0.155 kg; P < 0.01) only. LPS injection reduced ADG during weeks 2 and 4 (P < 0.01). Dietary treatment did not affect feed efficiency (P > 0.10). Challenging pigs with LPS reduced (P < 0.01) feed efficiency during week 2, but increased (P < 0.05) feed efficiency during week 3. There were no interactive effects between diet and LPS on plasma cytokines levels, except for cortisol (P < 0.05). Plasma levels of cytokines (interleukin-1β, interferon-γ, tumour necrosis factor-α) and cortisol increased (P < 0.01) in pigs challenged with LPS. The high levels of dietary Zn and Cu reduced (P < 0.05) the increases in plasma cortisol level in LPS-challenged pigs at days 9 and 19. There were no differences among the dietary treatments in counts of coliforms and lactobacillus in the digesta from ileum and colon (P > 0.10). PCR-DGGE analysis showed that high levels of dietary Zn and particularly Cu significantly reduced the diversity of ileal microbiota. The effect on microbiota diversity was reversible when dietary Zn and Cu were removed. Enhanced growth performance of the newly weaned piglets fed high dietary Zn and Cu appears mediated via changes in gut microbiota as well as a reduced cortisol response following an immune challenge. Key words: Piglets, zinc, copper, lipopolysaccharide, gut microbiota, cytokines


2021 ◽  
Vol 7 (12) ◽  
Author(s):  
Sophie Marre ◽  
Cyrielle Gasc ◽  
Camille Forest ◽  
Yacine Lebbaoui ◽  
Pascale Mosoni ◽  
...  

Targeting small parts of the 16S rDNA phylogenetic marker by metabarcoding reveals microorganisms of interest but cannot achieve a taxonomic resolution at the species level, precluding further precise characterizations. To identify species behind operational taxonomic units (OTUs) of interest, even in the rare biosphere, we developed an innovative strategy using gene capture by hybridization. From three OTU sequences detected upon polyphenol supplementation and belonging to the rare biosphere of the human gut microbiota, we revealed 59 nearly full-length 16S rRNA genes, highlighting high bacterial diversity hidden behind OTUs while evidencing novel taxa. Inside each OTU, revealed 16S rDNA sequences could be highly distant from each other with similarities down to 85 %. We identified one new family belonging to the order Clostridiales , 39 new genera and 52 novel species. Related bacteria potentially involved in polyphenol degradation have also been identified through genome mining and our results suggest that the human gut microbiota could be much more diverse than previously thought.


2020 ◽  
Author(s):  
YeonGyun Jung ◽  
Dorsaf Kerfahi ◽  
Huy Quang Pham ◽  
HyunWoo Son ◽  
Jerald Conrad Ibal ◽  
...  

The gut microbiome is essential to human health. However, little is known about the influence of the environment versus host-related factors (e.g. genetic background, sex, age, and body mass) in the formation of human intestinal microflora. Here, we present evidence in support of the importance of host-related factors in the establishment and maintenance of individual gut assemblages. We collected fecal samples (n = 249) from 44 Korean naval trainees and 39 healthy people living in Korea over eight weeks and sequenced the bacterial 16S rRNA genes. The following hypotheses were tested: 1) microbiome function is linked to its diversity, community structure, and genetic host-related factors, and 2) preexisting host-related factors have a more significant effect on gut microbiome formation and composition than environmental factors. For each individual, the difference between the initial gut microbiota and that after eight weeks was negligible even though the 44 naval trainees lived in the same area and received the same diet, the same amount of exercise, and the same amount of physical stress during the study. This suggests that host-related factors, rather than environmental factors, is a key determinant of individual gut microflora. Moreover, eight weeks of physical training and experiencing the same environmental conditions resulted in an increase in the species Bifidobacterium, Faecalibacterium, and Roseburia in most trainees, suggesting a healthier intestinal environment.


Metabolites ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 456
Author(s):  
Mihai V. Curtasu ◽  
Valeria Tafintseva ◽  
Zachary A. Bendiks ◽  
Maria L. Marco ◽  
Achim Kohler ◽  
...  

The metabolome and gut microbiota were investigated in a juvenile Göttingen minipig model. This study aimed to explore the metabolic effects of two carbohydrate sources with different degrees of risk in obesity development when associated with a high fat intake. A high-risk (HR) high-fat diet containing 20% fructose was compared to a control lower-risk (LR) high-fat diet where a similar amount of carbohydrate was provided as a mix of digestible and resistant starch from high amylose maize. Both diets were fed ad libitum. Non-targeted metabolomics was used to explore plasma, urine, and feces samples over five months. Plasma and fecal short-chain fatty acids were targeted and quantified. Fecal microbiota was analyzed using genomic sequencing. Data analysis was performed using sparse multi-block partial least squares regression. The LR diet increased concentrations of fecal and plasma total short-chain fatty acids, primarily acetate, and there was a higher relative abundance of microbiota associated with acetate production such as Bacteroidetes and Ruminococcus. A higher proportion of Firmicutes was measured with the HR diet, together with a lower alpha diversity compared to the LR diet. Irrespective of diet, the ad libitum exposure to the high-energy diets was accompanied by well-known biomarkers associated with obesity and diabetes, particularly branched-chain amino acids, keto acids, and other catabolism metabolites.


Sign in / Sign up

Export Citation Format

Share Document