Effect of selenium fertilizer source and rate on grain yield and selenium and cadmium concentration of durum wheat

2007 ◽  
Vol 87 (4) ◽  
pp. 703-708 ◽  
Author(s):  
Cynthia A Grant ◽  
Wayne T Buckley ◽  
Ronggui Wu

Field studies were conducted for 3 yr at two locations in Manitoba, Canada, to evaluate the effect of various sources and rates of Se fertilizer on crop growth and the Se and Cd concentrations of durum wheat. Selenium concentration in durum wheat grown without Se application ranged from 195 to 532 µg kg-1 over the 6 site-years. Selenium seed coating, “Selcote” commercial granular fertilizer, and a foliar spray of sodium selenate solution applied at Feekes stage 5 all increased Se concentration in durum wheat grain at all locations, without negative effects on crop stand, biomass yield or grain yield. Regardless of treatment, Cd concentration in the grain was generally below proposed regulatory limits. Application of Se did not reduce Cd concentration in the grain, regardless of Se source. Selenium fertilization can be used to increase Se concentration of durum wheat, but is not an effective means of reducing the grain Cd concentration. Key words: Selcote, sodium selenate, seed-coating, selenium, cadmium

2001 ◽  
Vol 81 (1) ◽  
pp. 17-27 ◽  
Author(s):  
C. A. Grant ◽  
K. R. Brown ◽  
G. J. Racz ◽  
L. D. Bailey

Effective fertilizer management is critical to maintain economic production and protect long-term environmental quality. Field studies were conducted over 4 yr at two locations in southwestern Manitoba to determine the effect of source, timing and placement of N on grain yield and N recovery of durum wheat (Triticum durum L. ‘Sceptre’) under reduced-tillage (RT) and conventional-tillage (CT) management. The effect of N management on durum grain yield and N recovery differed with soil type and tillage system. On the clay loam (CL) soil, lower yields with fall- as compared with spring-banded N were more frequent under RT than CT. Lower yields occurred more frequently with fall-applied as compared with spring-applied urea ammonium nitrate (UAN) than when urea or NH3 was the N source. On the drier fine sandy loam (FSL) soil, fall applications of N generally produced similar to higher grain yield than did spring applications. Differences among fertilizer sources and tillage systems were much less frequent with spring than fall applications of N. Where differences occurred, durum grain yields were higher with in-soil than surface applications of urea or UAN. In-soil applications of urea and UAN increased durum grain yield as compared with surface applications more frequently under RT than CT on the CL soil where yield potential was high, whereas increases on the FSL were as common under CT as under RT. On soils with a high yield potential, enhanced immobilisation and/or volatilisation of surface-applied N may reduce grain yield by reducing available N, particularly under RT. Selection of a suitable source-timing and placement combination to optimise crop yield may be more important under RT than CT. Key words: Conservation tillage, direct seeding, placement


2010 ◽  
Vol 90 (3) ◽  
pp. 353-357 ◽  
Author(s):  
A K Singh ◽  
J M Clarke ◽  
R M DePauw ◽  
R E Knox ◽  
F R Clarke ◽  
...  

Enterprise durum wheat [Triticum turgidum L. subsp. durum (Desf.) Husn.] is adapted to the durum production area of the Canadian prairies. It combines high grain yield, grain protein concentration, test weight, yellow grain pigment, and low grain cadmium concentration. Enterprise has slightly weaker straw strength, similar days to maturity, and improved fusarium head blight resistance compared with strongfield. Key words: Triticum turgidum L. subsp. durum (Desf.) Husn., durum wheat, cultivar description, grain yield, yellow pigment, cadmium


2021 ◽  
Vol 9 (12) ◽  
pp. 2410
Author(s):  
Zayneb Kthiri ◽  
Maissa Ben Jabeur ◽  
Kalthoum Harbaoui ◽  
Chahine Karmous ◽  
Zoubeir Chamekh ◽  
...  

Durum wheat production is seriously threatened by Fusarium head blight (FHB) attacks in Tunisia, and the seed coating by bio-agents is a great alternative for chemical disease control. This study focuses on evaluating, under field conditions, the effect of seed coating with Trichoderma harzianum, Meyerozyma guilliermondii and their combination on (i) FHB severity, durum wheat grain yield and TKW in three crop seasons, and (ii) on physiological parameters and the carbon and nitrogen content and isotope composition in leaves and grains of durum wheat. The results indicated that the treatments were effective in reducing FHB severity by 30 to 70% and increasing grain yield with an increased rate ranging from 25 to 68%, compared to the inoculated control. The impact of treatments on grain yield improvement was associated with higher NDVI and chlorophyll content and lower canopy temperature. Furthermore, the treatments mitigated the FHB adverse effects on N and C metabolism by resulting in a higher δ13Cgrain (13C/12Cgrain) and δ15Ngrain (15N/14Ngrain). Overall, the combination outperformed the other seed treatments by producing the highest grain yield and TKW. The high potency of seed coating with the combination suggests that the two microorganisms have synergetic or complementary impacts on wheat.


Agronomy ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 49
Author(s):  
Asif Naeem ◽  
Muhammad Aslam ◽  
Mumtaz Ahmad ◽  
Muhammad Asif ◽  
Mustafa Atilla Yazici ◽  
...  

Given that an effective combined foliar application of iodine (I), selenium (Se), and zinc (Zn) would be farmer friendly, compared to a separate spray of each micronutrient, for the simultaneous biofortification of grain crops, we compared effectiveness of foliar-applied potassium iodate (KIO3, 0.05%), sodium selenate (Na2SeO4, 0.0024%), and zinc sulfate (ZnSO4∙7H2O, 0.5%), separately and in their combination (as cocktail) for the micronutrient biofortification of four Basmati cultivars of rice (Oryza sativa L.). Foliar-applied, each micronutrient or their cocktail did not affect rice grain yield, but grain yield varied significantly among rice cultivars. Irrespective of foliar treatments, the brown rice of cv. Super Basmati and cv. Kisan Basmati had substantially higher concentration of micronutrients than cv. Basmati-515 and cv. Chenab Basmati. With foliar-applied KIO3, alone or in cocktail, the I concentration in brown rice increased from 12 to 186 µg kg−1. The average I concentration in brown rice with foliar-applied KIO3 or cocktail was 126 μg kg−1 in cv. Basmati-515, 160 μg kg−1 in cv. Chenab Basmati, 153 μg kg−1 in cv. Kisan Basmati, and 306 μg kg−1 in cv. Super Basmati. Selenium concentration in brown rice increased from 54 to 760 µg kg−1, with foliar-applied Na2SeO4 individually and in cocktail, respectively. The inherent Zn concentration in rice cultivars ranged between 14 and 19 mg kg−1 and increased by 5–6 mg Zn per kg grains by foliar application of ZnSO4∙7H2O and cocktail. The results also showed the existence of genotypic variation in response to foliar spray of micronutrients and demonstrated that a foliar-applied cocktail of I, Se, and Zn could be an effective strategy for the simultaneous biofortification of rice grains with these micronutrients to address the hidden hunger problem in human populations.


1994 ◽  
Vol 74 (3) ◽  
pp. 285-290 ◽  
Author(s):  
Umesh C. Gupta ◽  
J. A. MacLeod

This study was conducted in Prince Edward Island (PEI) Canada to determine the effect of various sources of selenium (Se) (i) sodium selenate (ii) selcote (iii) selcote 2 year and (iv) lime coated Se-granules on the Se concentration in cereals, forages and soybeans. All sources were applied to the soil at 10 g Se ha−1. For soybeans, sodium selenate was also applied as a foliar spray. All sources, in the year of application, proved effective in raising the feed crop Se to more than 100 μg Se kg−1, the minimum level required to prevent Se deficiency diseases in livestock. Lime coated Se granules resulted in much lower Se in all crops than other Se sources. Selenium concentration in soybean grain was higher than in cereals and forages treated with Se. Selenium concentration in soybean grain was higher following foliar applications of sodium selenate (3005 μg kg−1) than following soil application (1930 μg kg−1). Experiments conducted at a second location produced similar results. In most cases, soybean grain contained higher Se than either the whole plant or leaves. Selcote resulted in significantly higher Se, during the first year in soybean and forages, than selcote 2 year. This relationship was not consistent on cereals. Selenium concentrations in the second year crop of soybeans were below the minimum required level of 100 μg kg−1 needed to prevent Se deficiency in livestock for all Se sources except for the selcote 2 year source. Only the latter Se source resulted in a Se concentration of > 100 μg kg−1 for 2 yr. Soybeans fertilized with Se should prove to be an excellent feed crop for enriching grain with Se. Key words: Podzol soils, selcote, sodium selenate, barley, oat, forages, soybeans, crop Se


2010 ◽  
Vol 90 (6) ◽  
pp. 791-801 ◽  
Author(s):  
J.M. Clarke ◽  
F.R. Clarke ◽  
C.J. Pozniak

The first durum wheat [Triticum turgidum L. ssp. durum (Desf.) Husn.] cultivar developed in Canada was Stewart 63, registered in 1963. The objective of this paper is to document genetic progress in Canadian durum cultivars since that time. The genetic potential for grain yield in the main durum production area increased by about 0.7% per year and shows no sign of tapering off. This genetic potential has been captured in commercial farm yields, which increased by 1.5% per year during the same period. Grain protein concentration tended to increase slightly over the same time period because of the requirement for minimum protein concentration for cultivar release in Canada. Based on a study of two unselected doubled haploid populations, it was estimated that genetic gain for grain yield was reduced by 8 to 15% because of the negative correlation of protein concentration with yield. Yellow pigment concentration of semolina increased during the study period, especially after the mid 1990s, when higher pigment became an important breeding target. Gluten strength has also been increased since the mid 1990s. Grain cadmium concentration was reduced by about 50% to satisfy the requirements of certain export markets. Resistance to leaf and stem rust was maintained in all cultivars released since Stewart 63. In the past 10 yr, breeding has exploited genetic variation in resistance to Fusarium head blight to produce cultivars such as Brigade and CDC Verona with intermediate levels of resistance. There appears to be remaining genetic variability for all major traits in lines currently in registration trials.


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2444
Author(s):  
Federica Carucci ◽  
Giuseppe Gatta ◽  
Anna Gagliardi ◽  
Pasquale De Vita ◽  
Simone Bregaglio ◽  
...  

Organic farming systems are often constrained by limited soil nitrogen (N) availability. Here we evaluated the effect of foliar organic N and sulphur (S), and selenium (Se) application on durum wheat, considering N uptake, utilization efficiency (NUtE), grain yield, and protein concentration as target variables. Field trials were conducted in 2018 and 2019 on two old (Cappelli and old Saragolla) and two modern (Marco Aurelio and Nadif) Italian durum wheat varieties. Four organic fertilization strategies were evaluated, i.e., the control (CTR, dry blood meal at sowing), the application of foliar N (CTR + N) and S (CTR + S), and their joint use (CTR + NS). Furthermore, a foliar application of sodium selenate was evaluated. Three factors—variety, fertilization strategies and selenium application—were arranged in a split-split-plot design and tested in two growing seasons. The modern variety Marco Aurelio led to the highest NUtE and grain yield in both seasons. S and N applications had a positive synergic effect, especially under drought conditions, on pre-anthesis N uptake, N translocation, NUtE, and grain yield. Se treatment improved post-anthesis N uptake and NUtE, leading to 17% yield increase in the old variety Cappelli, and to 13% and 14% yield increase in Marco Aurelio and Nadif, mainly attributed to NUtE increase. This study demonstrated that the synergistic effect of foliar applications could improve organic durum wheat yields in Mediterranean environments, especially on modern varieties.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1050
Author(s):  
Annalisa Meucci ◽  
Anton Shiriaev ◽  
Irene Rosellini ◽  
Fernando Malorgio ◽  
Beatrice Pezzarossa

Foliar spray with selenium salts can be used to fortify tomatoes, but the results vary in relation to the Se concentration and the plant developmental stage. The effects of foliar spraying with sodium selenate at concentrations of 0, 1, and 1.5 mg Se L-1 at flowering and fruit immature green stage on Se accumulation and quality traits of tomatoes at ripening were investigated. Selenium accumulated up to 0.95 µg 100 g FW-1, with no significant difference between the two concentrations used in fruit of the first truss. The treatment performed at the flowering stage resulted in a higher selenium concentration compared to the immature green treatment in the fruit of the second truss. Cu, Zn, K, and Ca content was slightly modified by Se application, with no decrease in fruit quality. When applied at the immature green stage, Se reduced the incidence of blossom-end rot. A group of volatile organic compounds (2-phenylethyl alcohol, guaiacol, (E)-2-heptenal, 1-penten-3-one and (E)-2-pentenal), positively correlated with consumer liking and flavor intensity, increased following Se treatment. These findings indicate that foliar spraying, particularly if performed at flowering stage, is an efficient method to enrich tomatoes with Se, also resulting in positive changes in fruit aroma profile.


Plants ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 133
Author(s):  
Sourour Ayed ◽  
Imen Bouhaouel ◽  
Hayet Jebari ◽  
Walid Hamada

The use of biostimulant (BS) holds a promising and environmental-friendly innovation to address current needs of sustainable agriculture. The aim of the present study is twofold: (i) assess the potential of durum wheat seed coating with microbial BS (‘Panoramix’, Koppert), a mix of Bacillus spp., Trichoderma spp., and endomycorrhiza, compared to two chemical products (‘Spectro’ and ‘Mycoseeds’) through germination bioassay, pot and field trials under semi-arid conditions, and (ii) identify the most effective method of BS supply (‘seed coating’, ‘foliar spray’, and ‘seed coating + foliar spray’) under field conditions. For this purpose, three modern durum wheat cultivars were tested. ‘Panoramix’ was the most efficient treatment and enhanced all germination (germination rate, and coleoptile and radicle length), physiological (relative water content, chlorophyll content, and leaf area), and agro-morphological (plant height, biomass, seed number per spike, thousand kernel weight, and grain yield) attributes. Unexpectedly, the individual application of ‘Panoramix’ showed better performance than the combined treatment ‘Panoramix + Spectro’. Considering the physiological and agro-morphological traits, the combined method ‘seed coating + foliar spray’ displayed the best results. Principal component analysis confirmed the superiority of ‘Panoramix’ treatment or ‘seed coating + foliar spray’ method. Among tested durum wheat cultivars, ‘Salim’ performed better especially under ‘Panoramix’ treatment, but in some case ‘Karim’ valorized better this BS showing the highest increase rates. Based on these study outcomes, ‘Panoramix’ might be used as promising sustainable approach to stimulate durum wheat performance.


1998 ◽  
Vol 78 (1) ◽  
pp. 63-70 ◽  
Author(s):  
C. A. Grant ◽  
L. D. Bailey

Cadmium concentration in durum (Triticum turgidum) grain may be influenced by fertilizer management. A 3-yr field study conducted on two Orthic Black Chernozemic soils investigated the effects of banded and broadcast applications of N and P, and applications of Zn fertilizer on the yield and Cd concentration of the grain of two cultivars of durum wheat. Applications of N and P fertilizer increased grain yield of durum wheat when soil nutrient supply was low or yield potential was high, while Zn application generally had little effect on grain yield. Cadmium concentration of durum increased with applications of N and P and was generally unaffected by Zn application. Method of application of N or P did not consistently influence either grain yield or Cd concentration of the grain under the conditions of this study. Where differences due to placement occurred, banded P produced higher grain yield and Cd concentration than application of the same level of P as a broadcast treatment. Cadmium accumulation increased substantially with N and P applications, since both Cd concentration in the grain and grain yield increased with N and P application. Year-to-year variation in Cd concentration in the grain was large, indicating a strong effect of environment on Cd phytoavailability. Key words: Management, banding, nutrient, accumulation


Sign in / Sign up

Export Citation Format

Share Document