EFFETS DE DIFFERENTS TAUX DE FUMIER SUR LES POPULATIONS DE MAUVAISES HERBES, LA VERSE ET LE RENDEMENT EN GRAINS DES CEREALES

1979 ◽  
Vol 59 (4) ◽  
pp. 981-989
Author(s):  
J. M. DESCHENES ◽  
J. P. DUBUC

The effect of four rates (9–36 t/ha) of sheep manure applied in the fall was compared to conventional inorganic fertilization (49 kg of N, 60 kg of P2O5 and 60 kg of K2O/ha) applied at seeding on three species of cereals. Weed populations, lodging and grain yields were recorded on oats (Avena sativa L.), barley (Hordeum vulgare L.) and wheat (Triticum aestivum L.) from 1976 to 1978 on the St-André sandy loam and in 1977 and 1978 on the Kamouraska clay. The manure applied came from sheep fed entirely with hay silage. The various rates of sheep manure had no effect on weed population since no significant difference has been observed between the organic and inorganic fertilization. Lodging did not occur in any of the plots, irrespective of the soil type, during the 3 yr of the experiment. For the two soil types, the grain yields of oats, barley and wheat were usually higher on plots that received 27–36 t/ha of sheep manure than on plots that received inorganic fertilizer. The rates of 9 and 18 t/ha of manure resulted in grain yields significantly lower. An application on all plots of 15 kg/ha of inorganic nitrogen in the spring of 1978 has sensibly increased the grain yield. These results suggest that the fall spreading and the incorporation into the soil of 36 t/ha of sheep manure followed by an application of about 15 kg/ha of inorganic nitrogen in the spring provide a very satisfactory grain yield and do not increase the incidence of lodging and weed infestation.

1980 ◽  
Vol 60 (1) ◽  
pp. 61-68 ◽  
Author(s):  
J. M. DESCHENES ◽  
C. A. ST-PIERRE

On a St-André sandy loam and on a Kamouraska clay, the effect of soil temperature on oats (Avena sativa L.) was measured in the greenhouse using a system described by Deschênes et al. in 1974 and in the field, using two dates of seeding. The effect of weeds was measured by using un weeded and hand-weeded treatments. In the greenhouse, cool soil temperatures have delayed maturity and decreased straw and grain yields as well as total phytomass of oats on the two soil types. The dry weight of weeds in un weeded pots increased slightly. The effect of hand-weeding on oats was especially noticeable on the St-André sandy loam where three times as many weeds were observed. The straw yield and the total phytomass of oats were higher in the field experiment following an early seeding of oats on both soil types. On the other hand, grain yield was lower on plots seeded early and located on St-André sandy loam while the opposite was true on Kamouraska clay. The dry weight of weeds was lower on unweeded plots seeded early. The weeds reduced straw and grain yields on the St-André sandy loam but had no effect on Kamouraska clay because of the low weed infestation on the latter. The greenhouse and field experiments suggest that soil temperature is not the main factor in explaining the increase in grain yield observed with early-seeded cereals.


1981 ◽  
Vol 61 (4) ◽  
pp. 851-857 ◽  
Author(s):  
J.-M. DESCHENES ◽  
J.-P. DUBUC

Soil moisture and weeds were evaluated under two seeding dates on a St. André sandy loam to explain the increase in grain yield observed with the early sowing of oats (Avena sativa L.), barley (Hordeum vulgare L.), and wheat (Triticum aestivum L.). For each seeding date (early and late May), two soil moisture levels were obtained using the seasonal precipitation as the first level and by adding 25 mm of water/week as the second level. Weed cover was noted on each plot. A greenhouse experiment was conducted by simulating the soil moisture and soil temperature conditions measured in the field. In the field, early seeding and irrigation increased the yield of cereals but the yield differences observed between seeding dates were greater than the yield differences obtained between soil moisture levels. Soil moisture does not explain by itself the increased yield obtained with early seeding because the plots sown in late May and irrigated produced about 80% of the yield obtained on plots sown early and not irrigated. The regression analysis has shown that the soil thermal units between sowing and emergence and the total amount of water between emergence and heading explain more than 50% of the yield variation of cereals. Weeds did not play an important role. Greenhouse results were comparable to those obtained in the field although the importance of soil moisture was more evident. On light soils at La Pocatière, the yield of cereals is regulated by cool soil temperatures at seeding and by high soil moisture level between emergence and heading. These conditions are generally met when seeding is done in early May.


2014 ◽  
Vol 6 (4) ◽  
pp. 188 ◽  
Author(s):  
Joseph Adigun ◽  
A. O. Osipitan ◽  
Segun Toyosi Lagoke ◽  
Raphael Olusegun Adeyemi ◽  
Stephen Olaoluwa Afolami

Weed problem appears to be the most deleterious factor causing between 25 and 60% reduction in potential yield of cowpea. Field trials were therefore conducted to study the effect of inter-row spacing and period of weed interference on growth and yield of cowpea (Vigna unguiculata (L) Walp) at the Teaching and Research Farm of the Federal University of Agriculture, Abeokuta (07° 15'; 03° 25' E) in South Western Nigeria during the early and late wet seasons of 2009. The experiment consisted of eight main plots of weed interference which included initial weed removal for 3, 6, 9, and 12 weeks after sowing (WAS) and subsequently weed –infested until harvest as well as initial weed infestation for corresponding periods and thereafter kept weed free until harvest. There were also sub-plot treatments of three inter-row spacing of 60, 75, and 90 cm. All treatments in different combinations were laid out in a split-plot design with three replications. In both trials, the use of inter-row spacing of 60 cm resulted in significant reduction in weed growth as evident in lower weed dry matter production and subsequent higher cowpea pod and grain yields than those of 75 and 90 cm inter-row spacing. Initial weed infestation of up to 3 WAS did not have any adverse effect on crop growth and cowpea grain yields provided the weeds were subsequently removed. On the other hand, cowpea grain yield loss was not significantly averted by keeping the crop weed free for only 3 WAS without subsequent weed removal. In this study, initial weed-infestation for 6 WAS and beyond significantly depressed various crop growth parameter and cowpea grain yield compared with the crop kept weed free throughout its life cycle. In order to obtain optimum yields similar to that of the weed free cowpea field, it was required to keep the crop weed free for 6 WAS and beyond. However, frequent weeding beyond 9 weeks after sowing did not improve cowpea yield significantly and as a matter of fact it may even result in reduction of cowpea grain yield due to mechanical damage of hoe weeding. The practical implication of this finding is that early weeding starting from 3 WAS is very crucial for cowpea production while the critical period of weed removal for optimum yield in cowpea is between 3 and 9 WAS in the forest-savannah transitional zone of south Western Nigeria.


Agronomy ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1213 ◽  
Author(s):  
Geoffrey C. Anderson ◽  
Shahab Pathan ◽  
James Easton ◽  
David J. M. Hall ◽  
Rajesh Sharma

Surface (0–10 cm) and subsoil (soil layers below 10 cm) acidity and resulting aluminum (Al) toxicity reduce crop grain yields. In South Western Australia (SWA), these constraints affect 14.2 million hectares or 53% of the agricultural area. Both lime (L, CaCO3) and gypsum (G, CaSO4) application can decrease the toxic effect of Al, leading to an increase in crop grain yields. Within the region, it is unclear if G alone or the combined use of L and G has a role in alleviating soil acidity in SWA, due to low sulfate S (SO4–S) sorption properties of the soil. We present results from three experiments located in the eastern wheatbelt of SWA, which examined the short-term (ST, 2 growing seasons), medium-term (MT, 3 growing seasons), and long-term (LT, 7 growing seasons over 10 years) effects of L and G on grain yield and plant nutrient concentrations. Despite the rapid leaching of SO4–S and no self-liming impact, it was profitable to apply G, due to the significant ST grain yield responses. The grain yield response to G developed even following relatively dry years, but declined over time due to SO4–S leaching. At the LT experimental site had received no previous L application, whereas, at the ST and MT sites, L had been applied by the grower over the previous 5–10 years. For the LT site, the most profitable treatment for wheat (Triticum aestivum L.) grain yield, was the combined application of 4 t L ha−1 with 2 t G ha−1. At this site, the 0–10 cm soil pHCaCl2 was 4.6, and AlCaCl2 was greater than 2.5 mg kg−1 in the 10–30 cm soil layer. In contrast, at the ST and MT sites, the pHCaCl2 of 0–10 cm soil layer was ≥5.5; it was only profitable to apply G to the MT site where the soil compaction constraint had been removed by deep ripping. The use of L increases soil pHCaCl2, resulting in the improved availability of anions, phosphorus (P) in the LT and molybdenum (Mo) at all sampling times, but reduced availability of cations zinc (Zn) in the LT and manganese (Mn) at all sampling. The application of G reduced Mo concentrations, due to the high SO4–S content of the soil.


Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1241
Author(s):  
Peter Omara ◽  
Lawrence Aula ◽  
Fikayo B. Oyebiyi ◽  
Elizabeth M. Eickhoff ◽  
Jonathan Carpenter ◽  
...  

Biochar (B) has shown promise in improving crop productivity. However, its interaction with inorganic nitrogen (N) in temperate soils is not well-studied. The objective of this paper was to compare the effect of fertilizer N-biochar-combinations (NBC) and N fertilizer (NF) on maize (Zea mays L.) grain yield, N uptake, and N use efficiency (NUE). Trials were conducted in 2018 and 2019 at Efaw and Lake Carl Blackwell (LCB) in Oklahoma, USA. A randomized complete block design with three replications and ten treatments consisting of 50, 100, and 150 kg N ha−1 and 5, 10, and 15 Mg B ha−1 was used. At LCB, yield, N uptake, and NUE under NBC increased by 25%, 28%, and 46%, respectively compared to NF. At Efaw, yield, N uptake, and NUE decreased under NBC by 5%, 7%, and 19%, respectively, compared to NF. Generally, results showed a significant response to NBC at ≥10 Mg B ha−1. While results were inconsistent across locations, the significant response to NBC was evident at LCB with sandy loam soil but not Efaw with silty clay loam. Biochar application with inorganic N could improve N use and the yield of maize cultivated on sandy soils with poor physical and chemical properties.


1982 ◽  
Vol 98 (2) ◽  
pp. 347-355 ◽  
Author(s):  
R. W. Daniels ◽  
M. B. Alcock ◽  
D. H. Scarisbrick

SUMMARYPre-anthesis stem reserve contribution to grain yield was assessed in two spring barley cultivars of contrasting height. It was greatest in the taller, but final grain yields were similar. Partitioning of total reserve capacity to various plant parts showed that the leaf and sheath below the peduncle were most important, followed by stem internodes which had increasing reserve capacity up to internode 4.It is suggested that stem reserves are valuable for yields commonly achieved in U.K. commercial practice.High grain yields were associated with large positive increases in stem dry weight after anthesis. This would indicate that the source capacity to boost yield is more than proportional to that required to fill the grain alone.


1997 ◽  
Vol 77 (2) ◽  
pp. 207-213 ◽  
Author(s):  
G. Opoku ◽  
T. J. Vyn

Corn (Zea mays L.) yield reduction following winter wheat (Triticum aestivum L.) in no-till systems prompted a study on the effects of tillage and residue management systems on corn growth and seedbed conditions. Four methods for managing wheat residue (all residue removed, straw baled after harvest, straw left on the soil surface, straw left on the soil surface plus application of 50 kg ha−1N in the fall) were evaluated at two tillage levels: fall moldboard plow (MP) and no-till (NT). No-till treatments required at least 2 more days to achieve 50% corn emergence and 50% silking, and had the lowest corn biomass at 5 and 7 wk after planting. Grain yield was similar among MP treatments and averaged 1.1 t ha−1 higher than NT treatments (P < 0.05). Completely removing all wheat residue from NT plots reduced the number of days required to achieve 50% corn emergence and increased grain yields by 0.43 and 0.61 t ha–1 over baling and not baling straw, respectively, but still resulted in 8% lower grain yields than MP treatments. Grain yield differences among MP treatments were insignificant regardless of the amount of wheat residue left on the surface or N application in the fall. Early in the growing season, the NT treatments where residue was not removed had lower soil growing degree days (soil GDD) compared with MP (baled) treatment, and higher soil moisture levels in the top 15 cm compared with all other treatments. The application of 50 kg N ha−1 in the fall to NT (not baled) plots influenced neither the amount of wheat residue on the soil surface, nor the soil NO3-N levels at planting. Our results suggest that corn response in NT systems after wheat mostly depends on residue level. Key words: Winter wheat, straw management, no-till, corn, soil temperature, soil moisture


1996 ◽  
Vol 76 (2) ◽  
pp. 223-228 ◽  
Author(s):  
S. A. Brandt

A number of alternative options to summerfallow are feasible on the Dark Brown soils of the Canadian prairies. These include recropping to cereal or pulse crops, as well as use of summerfallow substitute crops, such as legume green manures. The objective of this study was to evaluate these options for their impact on the productivity of subsequent crops. Green-manure lentil (Lens culinaris Medic.), incorporated at either the bud or full-bloom stage of growth, field pew (Pisum sativum L.), grain lentil, and wheat (Triticum aestivum L.) grown as grain were compared with conventional summerfallow for their impact on yield of a succeeding wheat crop and of barley (Hordeum vulgare L.) grown the year after wheat on a Dark Brown Chernozemic soil at Scott, Saskatchewan. During the 5-yr period, 1984–1988, above-ground dry-matter production of green-manure lentil averaged 500 kg ha−1 at the bud stage of growth but more than doubled to 3170 kg ha−1, by full bloom. Grain yield of field pea averaged 1470 kg ha−1, while that of grain lentil, unfertilized wheat, and N-fertilized wheat averaged 1220, 1290 and 1490 kg ha−1, respectively. Considerable year-to-year yield variation occurred with all crops, variability being greatest for lentil. Yield of wheat grown after lentil green manure was similar to yield of wheat on summerfallow (2340 kg ha−1) during each of the 5 yr for both early (2360 kg ha−1) and late (2250 kg ha−1) incorporation. Wheat yield after pea (2210 kg ha−1) or grain lentil (2080 kg ha−) was reduced in 1987, but it was equal to wheat yield after summerfallow during the remaining 4 yr. Yield of wheat on wheat stubble, whether fertilized with N (1830 kg ha−1) or not (1610 kg ha−1), was generally lower than on summerfallow. Yield of barley grown the following year was generally unaffected by summerfallow or summerfallow substitute treatments. The higher value and similar productivity of pea and grain lentil, compared with wheat, combined with their favourable impact on subsequent wheat yield, should make these crops attractive alternatives to summerfallow. On fields unsuited to pea or grain lentil production, lentil green manures may be a suitable alternative to summerfallow because they should reduce soil degradation, although lentil green manures leave little residue to protect against soil erosion where through incorporation is practised. Summerfallow or green manure incorporated early or late generally resulted in greater available soil water and N for a succeeding crop than did grain lentil, pea or wheat. Key words: Green manuring, legume effect, recropping, lentil, grain yield, summerfallow alternatives


2021 ◽  
Vol 21 (1) ◽  
pp. 36-41
Author(s):  
HIMANI BISHT ◽  
D.K. SINGH ◽  
SHALOO ◽  
A.K. MISHRA ◽  
A. SARANGI ◽  
...  

An experiment was conducted during 2016-17 and 2017-18 at WTC, ICAR-IARI New Delhi on wheat crop sown on three dates (15th November, 30th November and 15th December) with five irrigation treatments. The results indicated that the number of days required for attaining different phenological stages decreased with delay in sowing.For all the phenological stages, crop sown on 15th November consumed higher heat units and consequently resulted in higher yield and heat use efficiency (HUE) than that of other sowing. However, higher pheno-thermal index (PTI) values were observed for the late sown crop i.e. 15th December. Further, among the irrigation treatments, five irrigations throughout the growing period showed increase in days to physiological maturity as well as heat units and HUE for grain and biological yield as compared to other treatments. Five irrigations throughout the growing period increased the grain yield by 69 per cent and biological yield by 46 per cent that that of one irrigation at CRI stage. However, there was no significant difference observed between four and five irrigations levels. The heat units or GDD had highly significant correlation with biological yield(r=0.91) as well as with the grain yield (r=0.85).


2020 ◽  
Vol 71 (10) ◽  
pp. 894
Author(s):  
M. K. Conyers ◽  
J. E. Holland ◽  
B. Haskins ◽  
R. Whitworth ◽  
G. J. Poile ◽  
...  

Soil testing guidelines for sulfur (S) under dryland cropping in south-eastern Australia are not well developed. Our objective was to assess the value of soil and tissue tests for S and nitrogen (N), because the two minerals frequently interact), in predicting S-deficient sites and hence increasing the probability of response to application of S (and N). Here, we report three proximal experiments in 2014–16 for barley (Hordeum vulgare L.) and wheat (Triticum aestivum L.) on a sandy soil in a semi-arid environment near Merriwagga in western New South Wales. The trials contained a factorial combination of four rates of each of applied N as urea and S as high-grade gypsum. Responses to S were obtained for dry matter (DM) quantity and nutrient content at flowering in 2014, but no grain-yield response was obtained in any year. DM response to applied S was obtained when the concentration of S in the DM was increased from 0.08% in barley and 0.09% in wheat without S application to 0.10–0.11% in both crops with S applied as gypsum. Because we obtained no grain-yield responses to applied S, the 0.10% S in grain was likely to have been adequate for both crops in these experiments. A pool of subsoil S was accessed during each season and this compensated for any DM deficiencies of S by the time of grainfill. Shallow soil tests (0–10 cm) for S can therefore indicate sufficiency but not necessarily deficiency; therefore, in grain-cropping areas, we recommend soil S tests on the same samples as used for deep N testing (to 60 cm) and that an S-budgeting approach be used following the soil tests. Furthermore, for marginal nutritional circumstances such as occurred in this study, the supporting use of N:S ratio is recommended, with values &gt;17 in DM or grain likely to indicate S deficiency for both barley and wheat.


Sign in / Sign up

Export Citation Format

Share Document