THE AGE OF SOME HOLOCENE SOILS ON THE EAR LAKE TERRACES IN SASKATCHEWAN

1984 ◽  
Vol 64 (2) ◽  
pp. 163-172 ◽  
Author(s):  
A. R. MERMUT ◽  
D. F. ACTON

Soil profiles on the lake bottom and on four successive postglacial lacustrine terraces situated on the edge of Ear Lake in west-central Saskatchewan were studied to contribute to the knowledge of processes associated with environments of soil formation since deglaciation. Detailed morphological studies and radiocarbon dates of selected horizons indicated incipient and well-developed paleosols have formed in response to progressive formation of the terraces. The ages of the paleosols revealed a possible relationship between postglacial climatic fluctuation and the formation of these terraces. Buried soils on the lower terraces meet the criteria for Solonetzic soils while surface soils of the upper terraces have Solonetzic characteristics. The study showed the presence of soils which have characteristics reflecting more than one interval of horizon differentiation and led to the suggestion that it may be erroneous to relate their properties solely to prevailing environmental conditions. Key words: 14C dates, terrace formation, soil age, Holocene soils, paleosol, Solonetzic soil

Geosciences ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 402 ◽  
Author(s):  
Denis Gavrilov ◽  
Sergey Loiko ◽  
Nina Klimova

Dark, coniferous hemiboreal forests in the south of West Siberia are located in the Holocene forest-steppe ecotone, where natural environmental conditions have been quite dynamic. This dynamic environment resulted in the contrasting evolution of regional soil cover and the development of unique soil profiles with the second humus horizon. The second humus horizon is assumed to be a relic from the dark-humus soil formation stage in the mid-Holocene. This article draws conclusions about changes in regional environmental conditions by analysing data from a geochemically interrelated coevolutionary soil series, obtained by using a combination of conventional soil studies, phytolith analyses, and accelerator mass spectrometry (AMS) dating of phytolith-occluded carbon (PhytOC) and humic acids. The results showed that, in general, phytocenoses changed from mire-meadow vegetation towards forest vegetation via the meadow stage. However, these stages had different durations, depending on the soil catenary position. The topographical divergence of soil phytolith profiles reflects the relief effect on the development of specific soil type combinations, accounting for the major elements of the regional mid-Holocene soil cover. The leading elementary soil-forming processes were humus accumulation and hydrogenic accumulation of calcium carbonates. In the hilltop site of Endocalcic Stagnic Albic Luvisols, the evolutionary changes were shown by the shift from the meadow phytocenosis (Calcic Stagnic Chernozem) to the forest phytocenosis. In the midslope site, the environment was more humid from the start, favouring a phytocenosis with features of the meadow-mire type. The shift from the meadow-mire environment (with Spodic Chernic Gleysols) to the forest type environment with leading profile-forming processes, acid hydrolysis and lessivage, was gradual, occurring via the meadow stage with Calcic Stagnic Chernozem. In the toeslope site (Calcic Stagnic Greyzemic Epidystric Umbrisols), the meadow-mire stage (with Spodic Chernic Gleysols) was succeeded by the forest stage of soil formation. The AMS-dating of PhytOC estimated that the dark-humus stage of soil formation began 6.5–5.7 years calBC. Despite the observed slight translocation of phytoliths down soil profiles and phytolith solubilisation, phytolith analysis can be used to reconstruct shifts in the soil formation environment for surface Holocene palaeosols.


Radiocarbon ◽  
2005 ◽  
Vol 47 (1) ◽  
pp. 159-175 ◽  
Author(s):  
Emily McClung de Tapia ◽  
Irma Domínguez Rubio ◽  
Jorge Gama Castro ◽  
Elizabeth Solleiro ◽  
Sergey Sedov

Radiocarbon dates largely obtained from bulk soil samples in 24 soil profiles in the Teotihuacán Valley, Mexico, are reported insofar as they represent a first step towards developing a sequence of soil formation, erosion, vegetation change, and human impact during the Holocene. Limitations of 14C dating in the area are considered, particularly the absence of charcoal in sediments and poor preservation of pollen. A broad temporal scheme is proposed to guide future research in which 4 periods are defined: ∼5000–2000 BP (relative stability with short, intermittent episodes of erosion); ∼2000–1500 BP (erosion-sedimentation, deforestation, and intensive agriculture); ∼1500–1000 BP (relative stability, depopulation, and partial recovery of the landscape); and ∼1000–500 BP (erosion-sedimentation, deforestation, and intensive agriculture).


1965 ◽  
Vol 161 (984) ◽  
pp. 355-362 ◽  

In assessing the importance of soil genesis in the development of habitat conditions through the post-Glacial, we need to know first of all the sequence of stages which a soil goes through in maturing, and secondly the time required for this sequence to be completed. Estimates of the first come from studies of the processes which are involved and comparisons of soil sequences seen in the field today. Inevitably, perhaps, we know more about the early stages of soil formation on new parent material and about the mature profile than we do about the long developmental stages in between. The time scale, too, has been estimated by extrapolation from known circumstances, such as the rate of soil formation after the draining of Lake Ragunda in 1796 (Tamm 1920), but this type of estimation involves assumptions about the constancy of the processes involved; allowances for climatic, hydrologic, or biotic environmental change are difficult to make with any precision. Nevertheless, on the rare occasions when direct estimate has been possible, as for instance the series of sand bars investigated by Burges & Drover (1953) in Australia, the results indicate that our indirect estimates are at least of the right order. It appears that in temperate regions two to four thousand years are necessary for a primary soil profile to mature. This may be an underestimate for soils derived from calcareous parent material, but in what follows, reference will be mainly to non-calcareous conditions, so it is unlikely that serious error will be introduced by taking this figure. It should be noted, however, that secondary soil development can take place at a very much greater speed. The ten thousand or so years of the post-Glacial have clearly provided ample time for the primary soils to reach maturity; in fact, if the estimated time scale is correct, and making generous allowance for possibly less favourable climatic conditions in the early stages of the post-Glacial, it seems that soils in Britain could have been mature (under normal free-draining conditions) by the end of the Boreal period. By then the poorest parent materials would have developed mature podsols if they were going to, and the more base-rich ones some form of brown earth. This conclusion can only be checked by studying soils of this age which have been preserved in some way. Buried soils appear to retain their visible profile charac­teristics relatively unchanged. Soil profiles may be buried artificially or by some natural process involving the mass movement of large quantities of material; or by the formation of peat. However, the formation of peat in Boreal or earlier times implies special hydrological conditions. Nevertheless, Havinga (1963), in Holland, has recently provided indirect evidence of ‘ homogeneous forest profiles ’ under a variety of forest types in pre-Boreal and Boreal times. In some cases bleached soils had succeeded these homogeneous profiles, usually due to a change in hydrologic conditions, and he points out that a homogeneous profile is never found directly under peat, the soils under peat always being more or less podsolized.


1984 ◽  
Vol 64 (1) ◽  
pp. 31-49 ◽  
Author(s):  
R. PROTZ ◽  
I. P. MARTINI ◽  
G. J. ROSS ◽  
J. TERASMAE

Six soil profiles on a transect orthogonal to the Hudson Bay coast of Ontario are shown to be of increasing age from approximately 100 yr near the coast to > 5000 yr 70 km inland. The stages of Podzolic soil development from calcareous parent materials are documented. The Ah horizons required at least 750 yr to develop. The Ae-Bh horizon sequence required at least 1893 yr to form. The Ae-Bf horizon sequence required at least 2300 yr to develop. The depth of carbonate leaching and vermiculite formation in the A horizons are very closely correlated to soil age. Key words: Vermiculite, Podzolic B horizon, carbon dating, carbonate leaching


2006 ◽  
Vol 85 (3) ◽  
pp. 197-220 ◽  
Author(s):  
K. Kaiser ◽  
A. Barthelmes ◽  
S. Czakó Pap ◽  
A. Hilgers ◽  
W. Janke ◽  
...  

AbstractA new site with Lateglacial palaeosols covered by 0.8 - 2.4 m thick aeolian sands is presented. The buried soils were subjected to multidisciplinary analyses (pedology, micromorphology, geochronology, dendrology, palynology, macrofossils). The buried soil cover comprises a catena from relatively dry (’Nano’-Podzol, Arenosol) via moist (Histic Gleysol, Gleysol) to wet conditions (Histosol). Dry soils are similar to the so-called Usselo soil, as described from sites in NW Europe and central Poland. The buried soil surface covers ca. 3.4 km2. Pollen analyses date this surface into the late Allerød. Due to a possible contamination by younger carbon, radiocarbon dates are too young. OSL dates indicate that the covering by aeolian sands most probably occurred during the Younger Dryas. Botanical analyses enables the reconstruction of a vegetation pattern typical for the late Allerød. Large wooden remains of pine and birch were recorded.


Solid Earth ◽  
2014 ◽  
Vol 5 (2) ◽  
pp. 901-914 ◽  
Author(s):  
M. Oliva ◽  
G. Vieira ◽  
P. Pina ◽  
P. Pereira ◽  
M. Neves ◽  
...  

Abstract. Ice wedges are widespread periglacial features in the landscape of Adventdalen, Svalbard. The networks of ice wedges have created areas with well-developed polygonal terrains in the lowest fluvial terraces in this valley. We have examined the sedimentological characteristics of the northern and southern banks of the Advent river for palaeoenvironmental purposes. The base of two sedimentary sections reported radiocarbon dates of 3.3 and 3.9 ka BP, respectively. The northern site is constituted by three very different lithostratigraphical units, which suggests that their formation should be related to different environmental and climate conditions. By contrast, the southern section shows a rather homogeneous composition, with no significant variations in grain size and organic matter content. In both cases the uppermost sediments are constituted by a thick aeolian deposit. According to our data, warmer climate conditions may have prevailed during the mid Holocene until 3.3 ka BP with widespread peat formation in the valley bottom. Subsequently, a period with alternating soil formation and aeolian sedimentation took place from 3 to 2.5 ka BP, probably due to increasing climatic severity. During the last millennium a long-term cooling trend has favoured aeolian deposition in the lowest part of Adventdalen.


1977 ◽  
Vol 14 (12) ◽  
pp. 2824-2857 ◽  
Author(s):  
G. H. Miller ◽  
J. T. Andrews ◽  
S. K. Short

A study of the stratigraphic sequence (14C and amino acid age control), marine bivalve faunal changes, and palynology of buried soils and organic-rich sediment collected from the Clyde Foreland Formation in the extensive cliff sections of the Clyde foreland, eastern Baffin Island, N.W.T., suggests the following last interglacial – Foxe (last glaciation) glacial – present interglacial sequence.(1) Cape Christian Member (ca. 130 000 years BP?)Consists of the Sledgepointer till overlain by the Cape Christian marine sediments. In situ molluscan fauna, collected from the marine sediments, contain a moderately warm bivalve assemblage. A well-developed soil that formed on the marine sediments (Cape Christian soil) contains an interglacial pollen assemblage dominated by dwarf birch. U-series dates of > 115 000 and ca. 130 000 years BP on molluscs from the Cape Christian marine sediments suggest that they were deposited during the last interglaciation, here termed the Cape Christian Interglaciation. The development of a subarctic pollen assemblage in the Cape Christian soil has not been duplicated during the present interglaciation, suggesting higher summer temperatures and perhaps a duration well in excess of 10 000 years for the last interglaciation.(2) Kuvinilk MemberConsists of fossiliferous marine sediments, locally divided by the Clyde till into upper and lower units. The Clyde till was deposited by the earliest and most extensive advance of the Foxe (last) Glaciation. Kuvinilk marine sediments both under- and overlying the Clyde till contain the pecten Chlamys islandicus, indicating that the outlet glacier advanced into a subarctic marine environment. Amino acid ratios from in situ pelecypod shells abovę and below the Clyde till are not statistically different, but contrast markedly with ratios obtained from the same species in the Cape Christian Member. Organic horizons within the Kuvinilk marine sediments contain a relatively rich pollen assemblage, although 'absolute' counts are low.(3) Kogalu Member (> 35 00014C years BP)Sediments of the Kogalu Member unconformably overlie those of the Kuvinilk Member, but are of a similar character. The dominant sediments are marine in origin, but in places are divided into upper and lower units by the Ayr Lake till. Amino acid ratios from in situ shells above and below the Ayr Lake till are indistinguishable, but substantially less than those in the Kuvinilk Member, suggesting the two members are separated by a considerable time interval. Radiocarbon dates on shells in the Kogalu marine sediments range from 33 000 to 47 700 years BP, but these may be only minimum estimates. The sea transgressed to a maximum level 70–80 m asl, coincident with the glacial maximum. Subarctic marine fauna of interstadial–interglacial character occur within the Kogalu marine sediments.(4) Eglinton Member (10 000 years BP to present)A major unconformity exists between the Kogalu and Eglinton Members. Ravenscraig marine sediments were deposited during an early Holocene marine transgression–regression cycle; the oldest dates on these sediments are ca. 10 000 years BP. Locally a vegetation mat occurs at the base or within the Ravenscraig unit. Pollen from these beds is sparse, but indicates a terrestrial vegetation assemblage as diverse as that of today. There is no evidence that Laurentide Ice reached the foreland during the last 30 000 years. Eolian sands that overlie a soil developed on the marine sediments record a late Holocene climatic deterioration. Pollen in organic-rich sediments at the base of, and within, the eolian sands record a vegetation shift in response to climatic change.


2017 ◽  
Vol 50 (1) ◽  
pp. 295
Author(s):  
S. Doani ◽  
K. Albanakis ◽  
O. Koukousioura ◽  
K.K. Koliadimou

The aim of the present study is to investigate the sedimentological characteristics of Lake Koronia down to a depth of 3.5m below lake bottom. Sampling operations took advandage of a season that the lake bottom was exposed to subaerial conditions. The sedimentological analysis proved that sediments consist of mud to sandy mud, with 2 phases of very fine sand fractions. The proportion of dry organic matter contained into sediment, appears to be generally small while the rates of moisture and volatiles are relatively high. Furthermore, this study examines the distribution of ostracod populations in the sediments of the lake in relation to depth, grain size and other environmental conditions of this water body. Four ostracod species were identified: Candona neglecta, Darwinula stevensoni, Heterocypris spp. and Limnocythere inopinata. The study of freshwater ostracods provides information for the palaeoecological/palaeoenvironmental conditions during the sedimentation.


Author(s):  
Yuliia Chykailo ◽  
Ivan Voloshyn

In the article is analyzed the soils’ properties in near-highway road strips of M-10 Lviv- Krakovets with width up to 150 m. Within the near-road strips of the highway, have been established 12 experimental polygons under forest, meadow vegetation and agricultural lands. On each polygons from soils profile samples are selected the most common soils: sod-podzolic, formed on fl uvio-glacial and gray-forest soils formed onloess loam. Completed description of soil profiles to depth of 0-100 cm. Part of experimental soils are formed under hornbeam-beech forests (11, 12 polygons) and oak-hornbeam-pine (4, 6, 7, 8 polygons). The researches revealed that in soil profiles at different depths are lie buried in eolian forms of relief (dunes) with different steepness of slopes. The steepness of the walls of the superficial layers of the dunes varies from 10 to 30°. In the research profiles of near-highway soils on the surface of the dunes, fi nd presence of progumed fragments of strips up wide to 2–3 cm. On the territory of the Nadsyanska moraine-zandrova alluvial plain at a distance of 50 m from the roadway (polygon 2, in the valley of the river Shklo, where the grassland vegetation is predominant, the turfy shallow gluten sandy soils are formed on alluvial deposits) discovered two low-power buried humus horizons who inherited a deflationary relief. Their steepness on the surface of the dunes is about 10 °. In polygon 3, the incision is laid in the micro threshold of the ancient relief, where the vegetation is represented by a spruce forest with oak impurities. In the profile of sod-hidden-podzolic sandy soil, on the surface of buried dunes which have steep walls 10-20°, are observed a humus layers . In the polygon 12, which is laid in the southwestern spurs of Roztochya 1,5 km north of the village of Birky in the hornbeam forest, steepness of the walls superficial layers of dunes of western exposition ranges from 10 to 12°. Soil is a clear-gray forest-loamy on loess loamy. In the soil profi les have been identified the following chemical elements: Pb, Zn, Co, Cu, Ni, Mo, Cr, Mn, V, Ba, Sr, Zr, Fe, Ti, Sn. The researches have established that in the territory of the Nadsyanska moraine-zandrovu alluvial plain, and in the southwestern spurs of Roztochchya, widespread buried dune relief. Based on our research, we propose to consider the issue of the allocation of types (subtypes) in soil legends, to investigate the defilations and inter deflation periods of their formation. Key worlds: near-roads strips, soil profile, deflation forms, buried soils, fragments of humus layers.


Sign in / Sign up

Export Citation Format

Share Document