IRRIGATION SUITABILITY OF SOLONETZIC SOILS IN THE COUNTY OF NEWELL, ALBERTA

1990 ◽  
Vol 70 (4) ◽  
pp. 705-715 ◽  
Author(s):  
D. R. BENNETT ◽  
T. ENTZ

A 5-yr study was conducted in the County of Newell to monitor soil salinity and sodicity, water-table levels and crop production on Solonetzic soil associations under normal irrigation management practices. All soil associations consisted of at least 50 percent Solonetzic Order soils, with Brown Solod as the dominant subgroup at all but one site. Changes in soil quality were monitored through regular measurements of water-table levels, annual fall sampling and chemical analysis of soils. Irrigation practises used by farmers did not permanently raise water-table levels at any of the sites irrigated by center pivots. Changes in soil salinity or sodicity as a result of irrigation were generally not statistically significant, suggesting that the salt status of soils at most sites did not change appreciably over the 5-yr period. The relatively low productive capability of land units dominated by Solonetzic soils was evident in the low yield and by a high degree of variability in yield within individual sites. Careful irrigation management partially compensated for some of the soil limitations in these Solonetzic soil landscapes; however, due to the low productivity observed, modification of existing land classification standards to allow irrigation of Solonetzic soils is not presently recommended. Key words: Irrigation suitability, Solonetzic soils, productive capability

Agriculture ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 76 ◽  
Author(s):  
Giulia Marino ◽  
Daniele Zaccaria ◽  
Richard L. Snyder ◽  
Octavio Lagos ◽  
Bruce D. Lampinen ◽  
...  

In California, a significant percentage of the pistachio acreage is in the San Joaquin Valley on saline and saline-sodic soils. However, irrigation management practices in commercial pistachio production are based on water-use information developed nearly two decades ago from experiments conducted in non-saline orchards sprinkler-irrigated with good quality water. No information is currently available that quantify the effect of salinity or combined salinity and sodicity on water use of micro-irrigated pistachio orchards, even though such information would help growers schedule irrigations and control soil salinity through leaching. To fill this gap, a field research study was conducted in 2016 and 2017 to measure the actual evapotranspiration (ETa) from commercial pistachio orchards grown on non-saline and saline-sodic soils in the southern portion of the San Joaquin Valley of California. The study aimed at investigating the functional relations between soil salinity/sodicity and tree performance, and understanding the mechanisms regulating water-use reduction under saline and saline-sodic conditions. Pistachio ETa was measured with the residual of energy balance method using a combination of surface renewal and eddy covariance equipment. Saline and saline-sodic conditions in the soil adversely affected tree performance with different intensity. The analysis of field data showed that ETa, light interception by the tree canopy, and nut yield were highly and linearly related (r2 > 0.9). Moving from non-saline to saline and saline-sodic conditions, the canopy light interception decreased from 75% (non-saline) to around 50% (saline) and 30% (saline-sodic), and ETa decreased by 32% to 46% relative to the non-saline orchard. In saline-sodic soils, the nut yield resulted around 50% lower than that of non-saline orchard. A statistical analysis performed on the correlations between soil physical-chemical parameters and selected tree performance indicators (ETa, light interception, and nut yield) revealed that the sodium adsorption ratio (SAR) adversely affected tree performance more than the soil electrical conductivity (ECe). Results suggest that secondary effects of sodicity (i.e., degradation of soil structure, possibly leading to poor soil aeration and root hypoxia) might have had a stronger impact on pistachio performance than did salinity in the long term. The information presented in this paper can help pistachio growers and farm managers better tailor irrigation water allocation and management to site-specific orchard conditions (e.g., canopy features and soil-water salinity/sodicity), and potentially lead to water and energy savings through improved irrigation management practices.


2020 ◽  
pp. 138-149
Author(s):  
Pooja LR ◽  
Renu Singh ◽  
Manoj Shrivastava ◽  
Ruma Das ◽  
Seema Sangwan ◽  
...  

Nitrogen (N) fertilization is playing a vital role in increasing crop production and ensuring food security. The global population which is growing exponentially has reached nearly 7.5 billion in 2015 (from 1.65 billion in 1900).The sole reason behind this is synthetic nitrogen fertilizer, it alone supported 3.5 billion people otherwise it would be somewhere around 3.5-4 billion. Imbalanced use of N fertilizer leads to N deficient condition which affects plants growth and development also in N surplus condition it has a huge negative impact on environment and human welfare. It includes negative effects on biodiversity, eutrophication, nitrate accumulation in waters, acidification of soil and water bodies, nitrous oxide emissions and risks to human health due to exposure to ozone and particulate matter. In agricultural systems, when fertilizer is applied to crop is mainly prone to losses through ammonia (NH3) volatilisation, nitrate (NO3-) leaching and denitrification. Loss of N in the form of NH3 and NO3- mainly depends on various factors like temperature, soil pH, soil moisture, soil properties, plant characteristics, seasonal fluctuations. An integrated approach is must to minimize N losses and increase crop yield. In broader sense, options to minimize NH3 volatilization and NO3 leaching are fertilizer, soil and irrigation based management strategies. Fertilizer management options like 4R nutrient stewardship concept applying the Right Source of nutrients, at the Right Rate, at the Right Time and in the Right Place. Managing soil by practicing conservational tillage with crop based scheduled irrigation. This small change in nutrient, soil and irrigation management find way to make improvements in the nutrient use efficiency, profitability in farming, environmental safety and sustainable ecosystem with fertilizers in the developing world.


1986 ◽  
Vol 66 (3) ◽  
pp. 437-443 ◽  
Author(s):  
C. CHANG ◽  
T. G. SOMMERFELDT ◽  
G. B. SCHAALJE ◽  
C. J. PALMER

The effects of subsoiling, deep ripping to 52 cm depth, in the amelioration of a Solonetzic soil under irrigated and nonirrigated conditions were examined at the Vauxhall Research Substation in Alberta. All plots were fertilized by broadcasting N and P2O5 at rates of 80 and 42 kg ha−1, respectively. Hard spring wheat (Triticum aestivum L. ’Neepawa’) was grown annually from 1980 to 1984. The plot area had a high degree of spatial variability in both physical and chemical properties of the soil. Subsoiling in the fall of 1979 and 1980 had no significant effects on soil salinity and sodicity or on wheat yield under nonirrigated conditions. However, under irrigated conditions, subsoiling enhanced the downward movement of salts and had a significant overall profile (to 90 cm) effect on soil salinity and sodicity, but it had no significant effect among depths within the profile. Subsoiling also had no significant effect on wheat yield under irrigated conditions. Irrigation alone improved the soil salinity and sodicity conditions, increased wheat yields, and reduced yield variability. Key words: Amelioration, irrigation, salinity, sodicity, spatial variability


1995 ◽  
Vol 31 (4) ◽  
pp. 395-408 ◽  
Author(s):  
R. A. Richards

SUMMARYThe area of salt-affected land is increasing because of irrigation practices and changed land use. Breeding crops that tolerate soil salinity and yield well in salt-affected soils, and employing crop management practices to counter salinity, have been proposed to maintain crop productivity. Here, it is argued that neither breeding nor management will adequately counter the effects of salinity. Although both offer the potential to maintain yields for a brief period, it is inevitable that salinity will continue to increase and crop productivity will decline. Only the establishment of a perennial vegetation that will maintain evapotranspiration at high levels all year round on both salt-affected land and recharge areas will halt the increase in salinization.Mejorar la producción en los suelos afectados por la sal


HortScience ◽  
2018 ◽  
Vol 53 (3) ◽  
pp. 347-353 ◽  
Author(s):  
Nastaran Basiri Jahromi ◽  
Forbes Walker ◽  
Amy Fulcher ◽  
James Altland ◽  
Wesley C. Wright

Container-grown nursery crops generally require daily irrigation applications and potentially more frequent applications during the hottest part of the growing season. Developing management practices that make more efficient use of irrigation water is important for improving the sustainability of nursery crop production. Biochar, a byproduct of pyrolysis, can potentially increase the water-holding capacity and reduce water and nutrient leaching. In addition, the development of sensor-based irrigation technologies has made monitoring substrate moisture a practical tool for irrigation management in the nursery industry. The objective of this research was to determine the effect of switchgrass biochar on water and nutrient-holding capacity and release in container substrates of Buxus sempervirens L. × Buxus microphylla (‘Green Velvet’ boxwood) and Hydrangea paniculata (Pinky Winky® hardy hydrangea). Containers were filled with pine bark and amended with 0%, 10%, or 25% volume of biochar. Plants were irrigated when the volumetric water content (VWC) reached the water-buffering capacity set point of 0.25 cm3·cm−3. The sensor-based irrigation in combination with the low cost biochar substrate amendment increased substrate water-holding capacity and reduced irrigation requirements for the production of hydrangea, a high water use plant. Biochar application rate influenced irrigation frequency, which likely affected plant biomass for hydrangea, but boxwood dry weight was unaffected by biochar rate. Total irrigation applied was decreased by 32% in 10% biochar treatment without reducing hydrangea dry weight. However, in the 25% biochar treatment, total irrigation applied was reduced by 72%, whereas dry weight decreased by 50%. Biochar application reduced leaching volume and leaching fraction in both plants. Leachate analysis over the course of the 8-week experiment showed that the average mass of phosphate (PO4), potassium (K), and total carbon was greater in the leachate from containers that received 25% biochar compared with those receiving 0% or 10% biochar for both plant species. For hydrangea, mass of total nitrogen (TN) and nitrate (NO3) in leachate was not significantly affected by increasing the biochar rate. However, for boxwood, the mass of NO3 and TN was greater in the 25% biochar treatment leachate, whereas the mass of ammonium (NH4) was unaffected. In hydrangea, total nutrients lost from the containers was lower in biochar-amended containers (both 10% and 25% biochar) because of receiving a lower total volume of water. Amendment with biochar also affected concentration of phosphorus (P) and K, with the highest concentration in both leaf tissue and substrate from the 25% biochar application rate.


HortScience ◽  
1996 ◽  
Vol 31 (4) ◽  
pp. 572f-572
Author(s):  
J.M.S. Scholberg ◽  
B.L. McNeal ◽  
J.W. Jones ◽  
S.J. Locascio ◽  
S.R. Olsen ◽  
...  

Modeling the growth of field-grown tomato (Lycopersicon esculentum Mill.) should assist researchers and commercial growers to outline optimal crop management strategies for specific locations and production systems. A generic crop-growth model (CROPGRO) was previously adapted to simulate the growth of fresh-market tomato under field conditions. Plant growth and development of field-grown tomato, and fruit yields, will be outlined and compared to model predictions for a number of locations in Florida, nitrogen fertilizer rates, and irrigation management practices. Possible application of the model to quantify effects of crop management on crop production will be discussed using simulated yield values for a wide range of environmental conditions.


Hydrology ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 8
Author(s):  
Giovanna De Filippis ◽  
Laura Ercoli ◽  
Rudy Rossetto

Nitrogen-nitrate, while being fundamental for crop production, is of particular concern in the agricultural sector, as it can easily leach to the water table, worsening groundwater quality. Numerical models and Geographic Information System may support the estimation of nitrate leaching rates in space and time, to support sustainable agricultural management practices. In this paper, we present a module for the simulation of the processes involved in the nitrogen cycle in the unsaturated zone, including nitrate leaching. This module was developed taking steps from the ANIMO and EPIC model frameworks and coupled to the hydrological models integrated within the FREEWAT platform. As such, the nitrogen cycle module was then included in the FREEWAT platform. The developed module and the coupling approach were tested using a simple synthetic application, where we simulated nitrate leaching through the unsaturated zone for a sunflower crop irrigated district during a dry year. The results of the simulation allow the estimation of daily nitrate concentration values at the water table. These spatially distributed values may then be further used as input concentration in models for simulating solute transport in aquifers.


EDIS ◽  
2013 ◽  
Vol 2013 (11) ◽  
Author(s):  
George Hochmuth ◽  
Laurie Trenholm ◽  
Don Rainey ◽  
Esen Momol ◽  
Claire Lewis ◽  
...  

Proper irrigation management is critical to conserve and protect water resources and to properly manage nutrients in the home landscape. How lawns and landscapes are irrigated directly impacts the natural environment, so landscape maintenance professionals and homeowners must adopt environmentally-friendly approaches to irrigation management. After selecting the right plant for the right place, water is the next critical factor to establish and maintain a healthy lawn and landscape. Fertilization is another important component of lawn and landscape maintenance, and irrigation must be applied correctly, especially following fertilization, to minimize potential nutrient losses. This publication supplements other UF/IFAS Extension publications that also include information on the role of soil and the root zone in irrigation management. This publication is designed to help UF/IFAS Extension county agents prepare materials to directly address nutrient losses from lawns and landscapes caused by inadequate irrigation management practices. This 6-page fact sheet was written by George Hochmuth, Laurie Trenholm, Don Rainey, Esen Momol, Claire Lewis, and Brian Niemann, and published by the UF Department of Soil and Water Science, October 2013. http://edis.ifas.ufl.edu/ss586


HortScience ◽  
1998 ◽  
Vol 33 (3) ◽  
pp. 498e-498
Author(s):  
S. Paramasivam ◽  
A.K. Alva

For perennial crop production conditions, major portion of nutrient removal from the soil-tree system is that in harvested fruits. Nitrogen in the fruits was calculated for 22-year-old `Hamlin' orange (Citrus sinensis) trees on Cleopatra mandarin (Citrus reticulata) rootstock, grown in a Tavares fine sand (hyperthermic, uncoated, Typic Quartzipsamments) that received various N rates (112, 168, 224, and 280 kg N/ha per year) as either i) broadcast of dry granular form (DGF; four applications/year), or ii) fertigation (FRT; 15 applications/year). Total N in the fruits (mean across 4 years) varied from 82 to 110 and 89 to 111 kg N/ha per year for the DGF and FRT sources, respectively. Proportion of N in the fruits in relation to N applied decreased from 74% to 39% for the DGF and from 80% to 40% for the FRT treatments. High percentage of N removal in the fruits in relation to total N applied at low N rates indicate that trees may be depleting the tree reserve for maintaining fruit production. This was evident, to some extent, by the low leaf N concentration at the low N treatments. Furthermore, canopy density was also lower in the low N trees compared to those that received higher N rates.


Sign in / Sign up

Export Citation Format

Share Document