scholarly journals Assessment of the impact of ungoverned spaces on insurgency in Borno State, Nigeria

2021 ◽  
Vol 13 (2) ◽  
Author(s):  
Sylvanus Helda Bernard ◽  
Mwanret Gideon Daful

This study examines the relationship between ungoverned spaces and insurgency in the Borno State, Nigeria. The aim is to understand the influence of geographical variables on the activities of insurgence. The study used satellite data, population data and data on insurgency attack in the study area. Normalized Difference Vegetation Index, percentage rise in slope analysis and reclassification were used for the satellite data processing.  Geographically Weighted Regression (GWR) models was employed for data analysis. The findings revealed that LGAs in the central and the southern parts of the state recorded the highest number of insurgency attacks. The central and far northern part of the state has more vegetal cover, which has influenced the high incidence of insurgency attack observed. In addition, the very high incidence of insurgency attack (145) observed in Gwoza LGA, is largely attributed to the presence of the Gwoza Mountain, which is one of the main strong holds of the insurgents in Borno State. The GWR analysis reveals that the performance of the model with the population density was much better than the other variables with a corrected Akaike Information Criterion (AICc) value of 273.15, R-Squared values of 0.0323, 0.0224, 0.0203 and 0.8901 for the undulating terrain, vegetation, combination of vegetation and undulating terrain, and population density respectively. Thus, the study concludes that vegetal cover and population density have more influence on insurgency attack in the study area. Hence, the need for policy makers and security establishments to properly monitor the forested areas.

2020 ◽  
Vol 13 (1) ◽  
pp. 19
Author(s):  
Lauren E. H. Mathews ◽  
Alicia M. Kinoshita

A combination of satellite image indices and in-field observations was used to investigate the impact of fuel conditions, fire behavior, and vegetation regrowth patterns, altered by invasive riparian vegetation. Satellite image metrics, differenced normalized burn severity (dNBR) and differenced normalized difference vegetation index (dNDVI), were approximated for non-native, riparian, or upland vegetation for traditional timeframes (0-, 1-, and 3-years) after eleven urban fires across a spectrum of invasive vegetation cover. Larger burn severity and loss of green canopy (NDVI) was detected for riparian areas compared to the uplands. The presence of invasive vegetation affected the distribution of burn severity and canopy loss detected within each fire. Fires with native vegetation cover had a higher severity and resulted in larger immediate loss of canopy than fires with substantial amounts of non-native vegetation. The lower burn severity observed 1–3 years after the fires with non-native vegetation suggests a rapid regrowth of non-native grasses, resulting in a smaller measured canopy loss relative to native vegetation immediately after fire. This observed fire pattern favors the life cycle and perpetuation of many opportunistic grasses within urban riparian areas. This research builds upon our current knowledge of wildfire recovery processes and highlights the unique challenges of remotely assessing vegetation biophysical status within urban Mediterranean riverine systems.


2020 ◽  
Vol 12 (2) ◽  
pp. 220 ◽  
Author(s):  
Han Xiao ◽  
Fenzhen Su ◽  
Dongjie Fu ◽  
Qi Wang ◽  
Chong Huang

Long time-series monitoring of mangroves to marine erosion in the Bay of Bangkok, using Landsat data from 1987 to 2017, shows responses including landward retreat and seaward extension. Quantitative assessment of these responses with respect to spatial distribution and vegetation growth shows differing relationships depending on mangrove growth stage. Using transects perpendicular to the shoreline, we calculated the cross-shore mangrove extent (width) to represent spatial distribution, and the normalized difference vegetation index (NDVI) was used to represent vegetation growth. Correlations were then compared between mangrove seaside changes and the two parameters—mangrove width and NDVI—at yearly and 10-year scales. Both spatial distribution and vegetation growth display positive impacts on mangrove ecosystem stability: At early growth stages, mangrove stability is positively related to spatial distribution, whereas at mature growth the impact of vegetation growth is greater. Thus, we conclude that at early growth stages, planting width and area are more critical for stability, whereas for mature mangroves, management activities should focus on sustaining vegetation health and density. This study provides new rapid insights into monitoring and managing mangroves, based on analyses of parameters from historical satellite-derived information, which succinctly capture the net effect of complex environmental and human disturbances.


2021 ◽  
Vol 13 (2) ◽  
pp. 323
Author(s):  
Liang Chen ◽  
Xuelei Wang ◽  
Xiaobin Cai ◽  
Chao Yang ◽  
Xiaorong Lu

Rapid urbanization greatly alters land surface vegetation cover and heat distribution, leading to the development of the urban heat island (UHI) effect and seriously affecting the healthy development of cities and the comfort of living. As an indicator of urban health and livability, monitoring the distribution of land surface temperature (LST) and discovering its main impacting factors are receiving increasing attention in the effort to develop cities more sustainably. In this study, we analyzed the spatial distribution patterns of LST of the city of Wuhan, China, from 2013 to 2019. We detected hot and cold poles in four seasons through clustering and outlier analysis (based on Anselin local Moran’s I) of LST. Furthermore, we introduced the geographical detector model to quantify the impact of six physical and socio-economic factors, including the digital elevation model (DEM), index-based built-up index (IBI), modified normalized difference water index (MNDWI), normalized difference vegetation index (NDVI), population, and Gross Domestic Product (GDP) on the LST distribution of Wuhan. Finally, to identify the influence of land cover on temperature, the LST of croplands, woodlands, grasslands, and built-up areas was analyzed. The results showed that low temperatures are mainly distributed over water and woodland areas, followed by grasslands; high temperatures are mainly concentrated over built-up areas. The maximum temperature difference between land covers occurs in spring and summer, while this difference can be ignored in winter. MNDWI, IBI, and NDVI are the key driving factors of the thermal values change in Wuhan, especially of their interaction. We found that the temperature of water area and urban green space (woodlands and grasslands) tends to be 5.4 °C and 2.6 °C lower than that of built-up areas. Our research results can contribute to the urban planning and urban greening of Wuhan and promote the healthy and sustainable development of the city.


2021 ◽  
Vol 13 (13) ◽  
pp. 2442
Author(s):  
Jichao Lv ◽  
Rui Zhang ◽  
Jinsheng Tu ◽  
Mingjie Liao ◽  
Jiatai Pang ◽  
...  

There are two problems with using global navigation satellite system-interferometric reflectometry (GNSS-IR) to retrieve the soil moisture content (SMC) from single-satellite data: the difference between the reflection regions, and the difficulty in circumventing the impact of seasonal vegetation growth on reflected microwave signals. This study presents a multivariate adaptive regression spline (MARS) SMC retrieval model based on integrated multi-satellite data on the impact of the vegetation moisture content (VMC). The normalized microwave reflection index (NMRI) calculated with the multipath effect is mapped to the normalized difference vegetation index (NDVI) to estimate and eliminate the impact of VMC. A MARS model for retrieving the SMC from multi-satellite data is established based on the phase shift. To examine its reliability, the MARS model was compared with a multiple linear regression (MLR) model, a backpropagation neural network (BPNN) model, and a support vector regression (SVR) model in terms of the retrieval accuracy with time-series observation data collected at a typical station. The MARS model proposed in this study effectively retrieved the SMC, with a correlation coefficient (R2) of 0.916 and a root-mean-square error (RMSE) of 0.021 cm3/cm3. The elimination of the vegetation impact led to 3.7%, 13.9%, 11.7%, and 16.6% increases in R2 and 31.3%, 79.7%, 49.0%, and 90.5% decreases in the RMSE for the SMC retrieved by the MLR, BPNN, SVR, and MARS model, respectively. The results demonstrated the feasibility of correcting the vegetation changes based on the multipath effect and the reliability of the MARS model in retrieving the SMC.


2021 ◽  
Author(s):  
Gaetana Ganci ◽  
Annalisa Cappello ◽  
Giuseppe Bilotta ◽  
Giuseppe Pollicino ◽  
Luigi Lodato

<p>The application of remote sensing for monitoring, detecting and analysing the spatial and extents and temporal changes of waste dumping sites and landfills could become a cost-effective and powerful solution. Multi-spectral satellite images, especially in the thermal infrared, can be exploited to characterize the state of activity of a landfill.  Indeed, waste disposal sites, during the period of activity, can show differences in surface temperature (LST, Land Surface Temperature), state of vegetation (estimated through NDVI, Normalized Difference Vegetation Index) or soil moisture (estimated through NDWI, Normalized Difference Water Index) compared to neighboring areas. Landfills with organic waste typically show higher temperatures than surrounding areas due to exothermic decomposition activities. In fact, the biogas, in the absence or in case of inefficiency of the conveying plants, rises through the layers of organic matter and earth (landfill body) until it reaches the surface at a temperature of over 40 ° C. Moreover, in some cases, leachate contamination of the aquifers can be identified by analyzing the soil moisture, through the estimate of the NDWI, and the state of suffering of the vegetation surrounding the site, through the estimate of the NDVI. This latter can also be an indicator of soil contamination due to the presence of toxic and potentially dangerous waste when buried or present nearby. To take into account these facts, we combine the LST, NDVI and NDWI indices of the dump site and surrounding areas in order to characterize waste disposal sites. Preliminary results show how this approach can bring out the area and level of activity of known landfill sites. This could prove particularly useful for the definition of intervention priorities in landfill remediation works.</p>


2018 ◽  
Vol 15 (35) ◽  
pp. 133-141
Author(s):  
Israa J. Muhsin

Karbala province regarded one part significant zones in Iraq and considered an economic resource of vegetation such as trees of fruits, sieve and other vegetation. This research aimed to utilize Normalized Difference Vegetation index (NDVI) and Subtracted (NDVI) for investigating the current vegetation cover at last four decay. The Normalized Difference Vegetation Index (NDVI) is the most extensively used satellite index of vegetation health and density. The primary goals of this research are gather a gathering of studied area (Karbala province) satellite images in sequence time for a similar region, these image captured by Landsat (TM 1985, TM 1995, ETM+ 2005 and Landsat 8 OLI (Operational Land Imager) 2015. Preprocessing such gap filling consider being vital stride has been implied on the defected image which captured in Landsat 2005 and isolate the regions of studied region. The Assessment vegetal cover changes of the studied area in this paper has been implemented using Normalized Difference Vegetation Index (NDVI), Green Normalized Difference Vegetation Index (GNDVI) and change detection techniques such as Subtracted (NDVI) method also have been used to detect the change in vegetal cover of the studied region. Many histogram and statistical properties were illustrated has been computed. From The results shows there are increasing in the vegetal cover from 1985 to 2015.


Alpine Botany ◽  
2020 ◽  
Author(s):  
Harald Crepaz ◽  
Georg Niedrist ◽  
Johannes Wessely ◽  
Mattia Rossi ◽  
Stefan Dullinger

Abstract Mountain plant species are changing their ranges in response to global warming. However, these shifts vary tremendously in rate, extent and direction. The reasons for this variation are yet poorly understood. A process potentially important for mountain plant re-distribution is a competition between colonizing species and the resident vegetation. Here, we focus on the impact of this process using the recent elevational shift of the sedge Carex humilis in the northern Italian Alps as a model system. We repeated and extended historical sampling (conducted in 1976) of the species in the study region. We used the historical distribution data and historical climatic maps to parameterize a species distribution model (SDM) and projected the potential distribution of the species under current conditions. We compared the historical and the current re-survey for the species in terms of the cover of important potential competitor species as well as in terms of the productivity of the resident vegetation indicated by the Normalized Difference Vegetation Index (NDVI). We found that Carex humilis has shifted its leading range margin upward rapidly (51.2 m per decade) but left many sites that have become climatically suitable since 1976 according to the SDM uncolonized. These suitable but uncolonized sites show significantly higher coverage of all dwarf shrub species and higher NDVI than the sites occupied by the sedge. These results suggest that resistance of the resident vegetation against colonization of migrating species can indeed play an important role in controlling the re-distribution of mountain plants under climate change.


Viruses ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 196 ◽  
Author(s):  
Abdourahmane Sow ◽  
Birgit Nikolay ◽  
Oumar Faye ◽  
Simon Cauchemez ◽  
Jorge Cano ◽  
...  

In Senegal, chikungunya virus (CHIKV) is maintained in a sylvatic cycle and causes sporadic cases or small outbreaks in rural areas. However, little is known about the influence of the environment on its transmission. To address the question, 120 villages were randomly selected in the Kedougou region of southeastern Senegal. In each selected village, 10 persons by randomly selected household were sampled and tested for specific anti-CHIKV IgG antibodies by ELISA. We investigated the association of CHIKV seroprevalence with environmental variables using logistic regression analysis and the spatial correlation of village seroprevalence based on semivariogram analysis. Fifty-four percent (51%–57%) of individuals sampled during the survey tested positive for CHIKV-specific IgG. CHIKV seroprevalence was significantly higher in populations living close to forested areas (Normalized Difference Vegetation Index (NDVI), Odds Ratio (OR) = 1.90 (1.42–2.57)), and was negatively associated with population density (OR = 0.76 (0.69–0.84)). In contrast, in gold mining sites where population density was >400 people per km2, seroprevalence peaked significantly among adults (46% (27%–67%)) compared to all other individuals (20% (12%–31%)). However, traditional gold mining activities significantly modify the transmission dynamic of CHIKV, leading to a potential increase of the risk of human exposition in the region.


Sign in / Sign up

Export Citation Format

Share Document