scholarly journals Preparation and characterization of groundnut shell-based activated charcoal

2021 ◽  
Vol 24 (12) ◽  
pp. 2139-2146
Author(s):  
L.O. Ajala ◽  
E.E. Ali

Groundnut shell, an agricultural waste was used as a precursor for the preparation of activated charcoal using zinc chloride as a chemical activating agent. The results of the optimization studies showed that the activated charcoal had best iodine adsorption capacity at 1.0 mol dm-3 activator’s concentration, 2:1 impregnation ratio, 70 ℃ impregnation temperature, 12 hr impregnation time, 500 ℃ activation temperature, and 2hr activationtime. The surface chemistry of the adsorbent was studied by Fourier transform infra-red spectroscopy and scanning electron microscopy–energy dispersive X-ray spectroscopy. The activated charcoal was found to contain porous structures with adsorption capacities significantly correlated with iodine value, porosity, and surface area. The surface morphology of the activated charcoal was altered as compared with the un-activated product, signifying that the adsorbent had been chemically modified. The disappearance of some functional groups and shift in some absorption bands were further indication that surface structural modification took place during activation and carbonization.This research has revealed that groundnut shell could be employed for the production of an alternative adsorbent which can be utilize for filtration and detoxification of impure water, treatment of effluent and wastewater, adsorption of pesticides, heavy metals and dyes from aqueous media.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Lawrence Olusegun Ajala ◽  
Ewa Ezeali Ali ◽  
Emmanuel Okewe Nnachi ◽  
Valentine Ifenna Onwukeme

Abstract This research studied decontamination of laboratory wastewater with an activated carbon derived from maize cob, an agricultural waste to ascertaining its adsorption effectiveness for water treatment. The preparation conditions such as the concentration of the activating agent, impregnation ratio, impregnation temperature, impregnation time, activation temperature and activation time were optimized. The adsorbent’s porous properties revealed its adsorption potency was correlated with the iodine value. The test adsorbent showed significant contaminants adsorption in the laboratory wastewater; the results obtained were within the standards for drinking water set by the regulatory agencies. This agricultural waste could be considered for the preparation of activated carbon which would ultimately serve as an alternative method of decontaminating laboratory wastewater.


2019 ◽  
Vol 2 (2) ◽  
pp. 67
Author(s):  
Rasyid Syidiq ◽  
La Ode Yusran ◽  
Muhammad Anas ◽  
Suritno Fayanto

This study aims to determine the structure of morphology and functional groups from activated charcoal for palm oil waste with variations in activation temperature. The process of two stages: the carbonation and activation stage. Carbonation process using a pyrolysis reactor at a carbonation temperature of 200oC -400oC for 6 hours. Then, the sample activated at a temperature of 700 °C, 750oC, 800oC, and 850 °C. Samples were characterization using SEM and FTIR. SEM analysis results show the largest pore size at a temperature of 850 oC with a diameter of 48.3 nm, and the lowest temperature was 700 °C with a capacity of 35.3 nm. Activated charcoal from oil palm shell waste at mesopore size. Next, FTIR analysis results show wave numbers 2165,18 cm-1, 1554 cm-1, 1030,76 cm-1 dan 424,11 cm-1.  The removal of some absorption bands and  the formation of new absorption bands, caused by the activation temperature


2020 ◽  
Vol 5 (4) ◽  
pp. 295
Author(s):  
Nandini Nur Hijrah ◽  
Muhammad Anas ◽  
Erniwati Erniwati

This study aims to determine the effect of variations of the sugar palm activation temperature on the functional groups of activated charcoal from palm bunch (Arengga Pinnata Merr) with potassium silicate (K2SiO3) activation agent. The process of making an chemically activated charcoal is divided into three stages, firstly the preparation stage of preparing the palm bunches into cutting, washing and drying, secondly carbonitation stage at a temperature of 300oC – 400oC about ± 8 hours and the chemical activation stage. Potassium silicate K2SiO3 is a new activation agent that is used to activate an activated charcoal by using 2 : 1 ratio (K2SiO3: activated palm bunches) for 12 hours and an activation temperature of 600oC, 650oC, 700oC, 750oC, and 800oC for 30 minutes. Characterization of activated charcoal from palm bunches was tested by using Fourier Transform Infrared (FTIR). The FTIR spectrum shows that the activated charcoal produced has an absorption pattern with the types of bonds are C≡C (Alkuna), C=C (Aromatic Rings), C-H (Alkanes), Si-O and C-H (Alkanes). The Information was obtained that a good activation temperature for activated charcoal of palm  bunches was seen at temperatures of 650oC, 700oC and 750oC with the largest IR absorption was seen at temperatures of 700 oC.


Jurnal Galam ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 16-28
Author(s):  
Dewi Alimah ◽  

Cashew nut (Anacardium occidentale L.) shell is abundantly available as waste from chasew nut processing industries. Cashew nut shell is potentially used for activated charcoal. This paper characterize the porosity microstructure of activated charcoal made from cashew nut shells which is physically activated at various activation temperatures. Initially, cashew nut shells were collected and carbonized at 500°C for 3 hours. Then, the charcoal was activated at 800°C and 1000°C for 60 minutes. The characterization of microstructure porosity of cashew nut shell activated charcoal at transverse cross-section was carried out at 500 times magnification of 10 kV Scanning Electron Microscope (SEM) using a grain-shaped test sample. Observation of the porosity formed on the sample surface included pore size and frequency. Observation data were arranged in tabulated form and analyzed descriptively. The results showed that the frequency of pores in charcoal activated at 1000°C tended to be higher than that of charcoal activated at 800°C. The higher activation temperature increased the pore diameter of the charcoal and decreased the clogging residue. Keywords: mesoporous, pyrolysis, hydrocarbon


Author(s):  
Pradnya K. INGLE ◽  
Attarkar KARISHMA ◽  
Virendra K. RATHOD

Peanut husk, an agricultural waste is a precursor biomass veteran for chemical activation using phosphoric acid. The work deals with activation of peanut husk using phosphoric acid followed by its application. The effect of various parameters such as impregnation ratio, temperature, particle size and agitation speed on copper adsorption were also studied. Physical characterization of the activated adsorbent was done using SEM, BET and FTIR to understand the modifications. The optimum parameter values of chemical activation influencing adsorption were 20% phosphoric acid concentration, 1:8 acid impregnation ratio, 60 °C activation temperature and 350 rpm stirring speed. The copper uptake was 14.3 mg/g for peanut husk whereas by chemical activation it was increased to 17.88 mg/g. Thus adsorption capacity of peanut husk can be successfully improved using phosphoric acid activation.


2021 ◽  
Author(s):  
xingping ZHANG ◽  
Haichao Li ◽  
Guangle Wang ◽  
Qingsong Ji ◽  
Tian Liang

Abstract Blood (livestock blood) is a cheap and readily available biomass material with a relatively high protein content.In this study, bio-nitrogen doped activated carbon (BN-AC) was prepared by chemical activation method with nitrogen-rich pig blood as raw material and magnesium chloride as activator.The specific surface area of BN-AC is 283.719 m2/g, and the pore volume is 0.128 cm3/g.The optimum conditions for the preparation of BN-AC were as follows: the mass impregnation ratio of activator to blood powder was 2:1, the impregnation time was 12 h, and the activation temperature was 600 ℃.The forms of biological nitrogen in activated carbon were studied by elemental analysis, Boehm titration, FTIR and XPS.The results showed that the total basicity of 0.720 mmol/g, and acidity of 0.313 mmol/g of the BN-AC.The surface of the precursor has only one Pyrrolic N, and the surface of BN-AC contains Pyridinic N, Pyrrolic N and Graphitic N, the N content of the precursor was successfully preserved.BN-AC has higher methylene blue and iodine adsorption values than ordinary activated carbon.


2018 ◽  
Vol 9 (1) ◽  
pp. 101-108 ◽  
Author(s):  
Shubhangi J. Mane-Gavade ◽  
Sandip R. Sabale ◽  
Xiao-Ying Yu ◽  
Gurunath H. Nikam ◽  
Bhaskar V. Tamhankar

Introduction: Herein we report the green synthesis and characterization of silverreduced graphene oxide nanocomposites (Ag-rGO) using Acacia nilotica gum for the first time. Experimental: We demonstrate the Hg2+ ions sensing ability of the Ag-rGO nanocomposites form aqueous medium. The developed colorimetric sensor method is simple, fast and selective for the detection of Hg2+ ions in aqueous media in presence of other associated ions. A significant color change was noticed with naked eye upon Hg2+ addition. The color change was not observed for cations including Sr2+, Ni2+, Cd2+, Pb2+, Mg2+, Ca2+, Fe2+, Ba2+ and Mn2+indicating that only Hg2+ shows a strong interaction with Ag-rGO nanocomposites. Under the most suitable condition, the calibration plot (A0-A) against concentration of Hg2+ was linear in the range of 0.1-1.0 ppm with a correlation coefficient (R2) value 0.9998. Results & Conclusion The concentration of Hg2+ was quantitatively determined with the Limit of Detection (LOD) of 0.85 ppm. Also, this method shows excellent selectivity towards Hg2+ over nine other cations tested. Moreover, the method offers a new cost effective, rapid and simple approach for the detection of Hg2+ in water samples.


Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 261
Author(s):  
Adolfo Bucio ◽  
Rosario Moreno-Tovar ◽  
Lauro Bucio ◽  
Jessica Espinosa-Dávila ◽  
Francisco Anguebes-Franceschi

A study on the physical and mechanical properties of beeswax (BW), candelilla wax (CW), paraffin wax (PW) and blends was carried out with the aim to evaluate their usefulness as coatings for cheeses. Waxes were analyzed by X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), differential scanning calorimetry (DSC), permeability, viscosity, flexural and tensile tests and scanning electron microscopy. Cheeses were coated with the waxes and stored for 5 weeks at 30 °C. Measured parameters were weight, moisture, occurrence and degree of fractures, and dimensional changes. The crystal phases identified by XRD for the three waxes allowed them to determine the length of alkanes and the nonlinear compounds in crystallizable forms in waxes. FTIR spectra showed absorption bands between 1800 and 800 cm−1 related to carbonyls in BW and CW. In DSC, the onset of melting temperature was 45.5 °C for BW, and >54 °C for CW and PW. Cheeses coated with BW did not show cracks after storage. Cheeses coated with CW and PW showed microcraks, and lost weight, moisture and shrunk. In the flexural and tensile tests, BW was ductile; CW and PW were brittle. BW blends with CW or PW displays a semi ductile behavior. Cheeses coated with BW blends lost less than 5% weight during storage. The best waxes were BW and the blends.


2016 ◽  
Vol 98 ◽  
pp. 70-74
Author(s):  
Andrius Laurikėnas ◽  
Jurgis Barkauskas ◽  
Aivaras Kareiva

In this study, lanthanide elements (Ln3+) and 2,3,5,6-tetrafluoro-1,4-benzenedicarboxylic acid (TFBDC) based metal-organic frameworks (MOFs) were synthesized by precipitation and diffusion-controlled precipitation methods. Powders insoluble in aqueous media and polar solvents were obtained. The microstructure and properties of Ln3+ MOFs were evaluated and discussed. X-ray diffraction (XRD) analysis, infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and fluorescence spectroscopy (FLS) were carried out to characterize Ln3+ MOF's crystallinity, the microstructure, chemical composition and optical properties.


Sign in / Sign up

Export Citation Format

Share Document