scholarly journals Effect of zinc nanoparticles on embryo and chicken growth, and the content of zinc in tissues and faeces

2020 ◽  
Vol 50 (1) ◽  
pp. 109-119
Author(s):  
M Łukasiewicz ◽  
A Łozicki ◽  
N.H. Casey ◽  
A Chwalibog ◽  
J Niemiec ◽  
...  

The hypothesis was that owing to their high bioavailability, zinc oxide nanoparticles (NanoZnO) can effectively replace (Zn) salts and reduce Zn excretion with faeces. The objective of this study was to investigate the effects of NanoZnO on the development of chicken embryos, the growth of broiler chickens, and Zn excretion with faeces. At day 1 of incubation, 120 eggs were randomly divided between a control group (not injected) and groups injected with a hydrocolloid of NanoZnO in increasing concentrations (50, 100, 500 mg/L). At day 19 of incubation, no differences were observed in the bodyweight, but 100 and 500 mg/L affected liver and heart weights, indicating that high levels of NanoZnO may induce differential organ development. In the subsequent experiment, 308 chickens were randomly divided into six groups. The control diet was supplemented with 55 mg Zn/kg (standard level), the 0 group received no Zn supplement, and groups fed NanoZnO received 25%, 50%, 75%, and 100% of the standard level. The 100% replacement of ZnO with NanoZnO increased the chickens’ bodyweight compared with the standard level of ZnO, but to the same level as the diet without ZnO supplementation. Furthermore, NanoZnO did not reduce the content of Zn in faeces, which was only significantly lower in the group without ZnO supplementation in comparison with other groups. The results indicate that the replacement of ZnO with NanoZnO had no negative effects on chicken growth. Compared with ZnO, NanoZnO did not reduce Zn excretion with faeces. Keywords: broiler, development, excretion, mineral, nanonutrition

Author(s):  
Mohammad Faizan ◽  
Fangyuan Yu ◽  
Chen Chen ◽  
Ahmad Faraz ◽  
Shamsul Hayat

: Abiotic stresses arising from atmosphere change belie plant growth and yield, leading to food reduction. The cultivation of a large number of crops in the contaminated environment is a main concern of environmentalists in the present time. To get food safety, a highly developed nanotechnology is a useful tool for promoting food production and assuring sustainability. Nanotechnology helps to better production in agriculture by promoting the efficiency of inputs and reducing relevant losses. This review examines the research performed in the past to show how zinc oxide nanoparticles (ZnO-NPs) are influencing the negative effects of abiotic stresses. Application of ZnO-NPs is one of the most effectual options for considerable enhancement of agricultural yield globally under stressful conditions. ZnO-NPs can transform the agricultural and food industry with the help of several innovative tools in reversing oxidative stress symptoms induced by abiotic stresses. In addition, the effect of ZnO-NPs on physiological, biochemical, and antioxidative activities in various plants have also been examined properly. This review summarizes the current understanding and the future possibilities of plant-ZnO-NPs research.


2021 ◽  
Author(s):  
Maryam Pourhajibagher ◽  
Abbas Bahador

Abstract The aim of this study was to evaluate the anti-biofilm and anti-metabolic activities of zeolite-zinc oxide nanoparticles (Zeo\ZnONPs)-based antimicrobial photodynamic therapy (aPDT) against pre-formed polymicrobial biofilms on the orthodontic brackets, as well as, assess the remineralization efficacy on polymicrobial biofilms induced enamel lesions. Following synthesis and characterization of Zeo\ZnONPs, cell cytotoxicity, hemolytic effect, and intracellular reactive oxygen species (ROS) production were determined. The anti-biofilm and anti-metabolic activities of aPDT using different concentrations of Zeo\ZnONPs were investigated. Microhardness tester and DIAGNOdent Pen were used to evaluate the changes of remineralization degree on the treated enamel slabs duration one and three months. No significant cytotoxicity and erythrocyte hemolysis were observed in treated cells with Ze\ZnONPs. When irradiated, suggesting that the Ze\ZnONPs were photoactivated, generating ROS and leading to reduce dose-dependently the cell viability and metabolic activity of polymicrobial biofilms. Also, the enamel surface microhardness value of exposed enamel showed a steady increase with the concentration of Zeo\ZnONPs. No statistically significant differences were shown between aPDT and sodium fluoride varnish as the control group. Overall, Zeo\ZnONPs-based aPDT with the greatest remineralization efficacy of enamel surface can be used as an anti-biofilm therapeutic method, which is involved with their potent ability to produce ROS.


2020 ◽  
Vol 98 (10) ◽  
Author(s):  
Suriya Kumari Ramiah ◽  
Elmutaz Atta Awad ◽  
Nur Izzah Mohd Hemly ◽  
Mahdi Ebrahimi ◽  
Olubodun Joshua ◽  
...  

Abstract This study was conducted to explore the effect of the zinc oxide nanoparticles (ZnONPs) supplement on the regulatory appetite and heat stress (HS) genes in broiler chickens raised under high or normal ambient temperatures. In this study, 240 one-day-old male broiler chicks (Cobb 500) were randomly assigned to 48 battery cages. From day 1, these 48 cages were randomly subjected to four different treatment strategies: Control (wherein, their basal diet included 60 mg/kg of ZnO), ZNONPs 40 (wherein basal diet included 40 mg/kg of ZnONPs), ZnONPs 60 (basal diet included 60 mg/kg of ZnONPs), and ZnONPs 100 (basal diet included 100 mg/kg of ZnONPs). Thereafter, from day 22 to 42, the chickens from each dietary treatment group were subjected to different temperature stresses either normal (23 ± 1 °C constant) or HS (34 ± 1 °C for 6 h/d), which divided them into eight different treatment groups. Our findings revealed that dietary ZnONPs altered the gene expression of cholecystokinin (ileum), heat stress proteins (HSP) 70 (jejunum and ileum), and HSP 90 (duodenum, jejunum, and ileum). The gene expression of ghrelin was affected by the interaction between the ZnONPs concentration and temperature in the duodenum and stomach. More studies are required to elucidate its complex physiological and biochemical functions of the regulation of gene expression within the intestine in heat-stressed broiler chickens.


2018 ◽  
Vol 10 (1) ◽  
pp. 53-57
Author(s):  
AMIR QADERMARZI ◽  
MOJTABA POULADI ◽  
ALI REZAMAND ◽  
SEYED HOSSEIN HOSEINIFAR ◽  
ALI AKBAR HEDAYATI

Qadermarzi A, Pouladi M, Rezamand A, Hoseinifar SH, Hedayati AA. 2018. Investigation of sub-acute levels of zinc oxide nanoparticles on the filtration rate of Mytilaster lineatus and Dressina polymorpha in the short term. Nusantara Bioscience 10: 53-57. The filtration rate is one of the physiological indices in the bivalves which indicate the degree of efficacy of the filtration function in the exposure to contaminants. In this study, changes in the filtration rate of freshwater bivalves (D. polymorpha and M. lineatus) were investigated after exposure periods of 5 and 10 days with nanoparticles. Bivalves were transferred from the natural environment to the laboratory. The distribution of nanoparticles was measured by differential light scattering (DLS). Bivalves were exposed to 2.5, 25 and 50 ppm nanoparticles for ten days in water reservoirs. The filtration rates were significantly different in the treatments compared to the control samples, with the highest filtration rate was observed in the control group. On the fifth day, the highest filtration rate was obtained in the first treatment of M. lineatus and the lowest filtration rate was obtained in the third treatment of D. polymorphia. The highest filtration rates were observed in the first and second treatments and the lowest filtration rate was observed in the third treatment. Also, there was no significant difference in the filtration rate of M. lineatus in the 1st treatment with control (P> 0.05) on the 5th day, but filtration rate was significantly (P <0.05) less than other concentrations and control group in the third treatment. On the other hand, the filtration rates on the 10th day showed similar differences compared to the 5th day. It could be concluded that the changes infiltration rate are an appropriate indicator for the measurement of contamination in nanoparticles.


2019 ◽  
Vol 20 (6) ◽  
pp. 465-475 ◽  
Author(s):  
Fawziah A. Al-Salmi ◽  
Reham Z. Hamza ◽  
Nahla S. El-Shenawy

Background: Zinc oxide nanoparticles (ZnO NPs) are increasingly utilized in both industrial and medical applications. Therefore, the study was aimed to investigate the effect of green nanoparticle complex (green tea extract/zinc oxide nanoparticles complex, GTE/ZnO NPs) on oxidative stress induced by monosodium glutamate (MSG) on the liver of rats. Methods: Wistar male rats (n=64) weighing between 200-250 g were divided randomly into eight groups: control group was given physiological saline (1 mg/kg), two groups were treated with two different doses of MSG (MSG-LD, MSG-HD; 6 and 17.5 mg/Kg, respectively), GTE was given 1 mg/mL, 5th group was treated with ZnO NPs and 6th group was treated with GTE/ZnO NPs complex while, 7th and 8th groups were treated with MSG-LD + GTE/ZnO NPs complex and MSG-HD + GTE/ZnO NPs complex, respectively. All substances were given orally for 30 consecutive days. At the end of the study, the liver was homogenized for measurement of the oxidative stress status and anti-inflammatory biomarkers as well as histological and transmission alternations. Results: Results showed that the antioxidant enzymes activity and glutathione level were significantly decreased in MSG groups than control in a dose-dependent manner. Conversely, the malondialdehyde and inflammatory cytokines levels were significantly increased in MSG groups than the control group. The liver indicated no evidence of alteration in oxidative status, anti-inflammatory and morphological parameters in GTE, ZnO NPs and GTE/ZnO NPs complex groups. Conclusion: In conclusion, MSG at both doses caused oxidative stress and inflammation on liver after 28 days of exposure that supported histological analysis and transmission view of hepatic parenchyma. GTE/ZnO NPs act as partial hepato-protective against MSG.


2021 ◽  
Vol 14 (6) ◽  
pp. 492
Author(s):  
Nina Melnikova ◽  
Alyona Balakireva ◽  
Dmitry Orekhov ◽  
Denis Kamorin ◽  
Natalia Didenko ◽  
...  

Preliminary protection of zinc oxide nanoparticles (ZnO NPs) with terpenoids such as betulin, its derivatives, and essential oils components has been proposed to produce gel-like oleophilic and hydrophilic formulations. We studied the properties of gel-like dispersions of ZnO NPs with immobilized terpenoids and their effects on the activity of LDH, GR, G6PDH, restoration of redox balance of co-enzyme pairs NAD+/NADH and NADP+/NADPH, as well as the activity of SOD, catalase, AlDH in erythrocytes in the treatment of burns in rats. Hysteresis loops on the rheograms of studied dispersions characterize their thixotropic properties. ZnO NPs with betulin diphosphate in the water–ethanol medium lead to a 20-fold increase in the hydrodynamic radius at pH 7.3 compared to the initial ZnO NPs, and facilitate the formation of Zn2+ ions and their penetration into the viable epidermis, unlike oleophilic dispersions. All dispersions reduce the healing time by one and a half times compared with the untreated control group, increase the activity of LDH, GR, G6PDH, SOD, catalase, AlDH, and contribute to the normalization of coenzyme balance. Normalization of the redox balance and wound state was more effective using hydrophilic dispersions due to Zn2 + penetration.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1998
Author(s):  
Norma Ruiz-Torres ◽  
Antonio Flores-Naveda ◽  
Enrique Díaz Barriga-Castro ◽  
Neymar Camposeco-Montejo ◽  
Sonia Ramírez-Barrón ◽  
...  

The objective of this study was to determine the oxidative stress and the physiological and antioxidant responses of coriander plants (Coriandrum sativum) grown for 58 days in soil with zinc oxide nanoparticles (ZnO NPs) and zinc sulfate (ZnSO4) at concentrations of 0, 100, 200, 300, and 400 mg of Zn/kg of soil. The results revealed that all Zn compounds increased the total chlorophyll content (CHLt) by at least 45%, compared to the control group; however, with 400 mg/kg of ZnSO4, chlorophyll accumulation decreased by 34.6%. Zn determination by induction-plasma-coupled atomic emission spectrometry (ICP–AES) showed that Zn absorption in roots and shoots occurred in plants exposed to ZnSO4 at all concentrations, which resulted in high levels of hydrogen peroxide (H2O2) and malondialdehyde (MDA). Only at 400 mg/kg of ZnSO4, a 78.6% decrease in the MDA levels was observed. According to the results, the ZnSO4 treatments were more effective than the ZnO NPs to increase the antioxidant activity of catalase (CAT), ascorbate peroxidase (APX), and peroxidases (POD). The results corroborate that phytotoxicity was higher in plants subjected to ZnSO4 compared to treatments with ZnO NPs, which suggests that the toxicity was due to Zn accumulation in the tissues by absorbing dissolved Zn++ ions.


Sign in / Sign up

Export Citation Format

Share Document