scholarly journals Antimicrobial-resistant in Escherichia coli isolated from different effluent locations within Ahmadu Bello University, Zaria, Nigeria

2021 ◽  
Vol 19 (2) ◽  
pp. 89-97
Author(s):  
M.S. Yusuf ◽  
M.B. Aliyu ◽  
M. Babashani ◽  
Y.M. Yangora ◽  
U.S. Salisu ◽  
...  

The safety of municipal water is increasingly becoming of concern globally. Agricultural activities, industrial and residential effluents and community waste are ways through which water sources are contaminated and resistant bacteria can be spread via effluents to municipal water. The study aimed to isolate and determine the distribution of antimicrobial drug-resistant Escherichia coli from different points of the University sewer system in April 2018. A total of 48 samples were collected twice weekly from the six randomly selected inspection chamber sites out of the 14 identified sites. The selected sites of the sewer were located in some hostels, markets and health service areas within the ABU. main campus. The samples were processed by culturing on an EMB agar plate followed by biochemical characterization using conventional biochemical tests and Microbact 12E. An antimicrobial sensitivity test was also carried out using 13 different antibiotic discs. The results obtained revealed that the Community market had an isolation rate of 4(50%), while Sickbay had 3(37.5%) and Danfodiyo hostel with 2(25%). Multiple antimicrobial resistance index (MARI) was found to be 0.31 from four isolates (36%) of E. coli of which 3(75%) were sampled from Sickbay and 1(25%) from ABU Dam. Also, five isolates (45%) had MARI of 0.23, of which 2(40%) were sampled from Danfodiyo hostel, 1(20%) from Ribadu hostel and 2(40%) from Community market. The E. coli isolates were more resistant to Ampicillin, tetracycline and cephalothin. Other bacteria isolated were Klebsiella ozaenae, Hapnea alvei and Morganella morganii all with MARI of 0.31. There is a need for public health awareness on the effect of discharging antibiotic-resistant E. coli contaminated effluent into the environment and water bodies. Hence, the public health significance of recycling such water for domestic usage and agricultural purpose.

Author(s):  
C. G. Ikimi ◽  
F. I. Omeje ◽  
C. K. Anumudu

Meat and meat products are a very important category of food consumed widely to meet the nutritional requirements of humans. Due to the high nutrient and moisture content of meat, they readily support the growth of diverse microorganisms. The consumption of these products, when contaminated by pathogenic microorganisms can pose a risk to health leading to possible food poisoning, with Escherichia coli being the most implicated organism. Thus, this research focused on the isolation of Escherichia coli from raw beef (Bos taurus) retailed in Otuoke market, its biochemical identification, pathogenicity testing and antibiogram. A total of 90 raw beef samples were collected from three retail points (30 samples per point) over 3 months and cultured on Eosin-Methylene Blue (EMB) agar for the elucidation of E. coli. Conventional biochemical tests were performed on isolates to identify E. coli. The isolates were subjected to Congo-red assay to test for pathogenicity and the agar-diffusion assay to test sensitivity to commonly utilized antibiotics. A total of 51 samples (56%) were contaminated with E. coli of which 24 samples (26.6%) had mean aerobic bacteria counts greater than 5.0 Log CFU/gm which is above the European Commission Regulation No. 2073/2005 guideline for fresh beef. All E. coli isolates tested positive to the Congo-red assay, thus indicating their potential pathogenicity. Antimicrobial sensitivity assay indicates the resistance of isolates to Tetracycline (60%), Erythromycin (80%) and Amoxicillin (85%). However, the isolates were sensitive to Nitrofurantoin (90%), Gentamicin (78%) and Ciprofloxacin (82%). The results obtained highlights the high level of contamination by potentially pathogenic E. coli in retailed fresh meats which are highly resistant to some of the commonly used antibiotics. The results obtained from this study is of public health significance as it indicates possible risks of infection to people through the consumption of inadequately cooked meat or the cross-contamination of other food items by the meat products which may lead to outbreaks of food poisoning. 


2021 ◽  
Vol 9 (2) ◽  
pp. 326
Author(s):  
Frederick Adzitey ◽  
Nurul Huda ◽  
Amir Husni Mohd Shariff

Meat is an important food source that can provide a significant amount of protein for human development. The occurrence of bacteria that are resistant to antimicrobials in meat poses a public health risk. This study evaluated the occurrence and antimicrobial resistance of E. coli (Escherichia coli) isolated from raw meats, ready-to-eat (RTE) meats and their related samples in Ghana. E. coli was isolated using the USA-FDA Bacteriological Analytical Manual and phenotypic antimicrobial susceptibility test was performed by the disk diffusion method. Of the 200 examined meats and their related samples, 38% were positive for E. coli. Notably, E. coli was highest in raw beef (80%) and lowest in RTE pork (0%). The 45 E. coli isolates were resistant ≥ 50% to amoxicillin, trimethoprim and tetracycline. They were susceptible to azithromycin (87.1%), chloramphenicol (81.3%), imipenem (74.8%), gentamicin (72.0%) and ciprofloxacin (69.5%). A relatively high intermediate resistance of 33.0% was observed for ceftriaxone. E. coli from raw meats, RTE meats, hands of meat sellers and working tools showed some differences and similarities in their phenotypic antimicrobial resistance patterns. Half (51.1%) of the E. coli isolates exhibited multidrug resistance. The E. coli isolates showed twenty-two different resistant patterns, with a multiple antibiotic resistance index of 0.0 to 0.7. The resistant pattern amoxicillin (A, n = 6 isolates) and amoxicillin-trimethoprim (A-TM, n = 6 isolates) were the most common. This study documents that raw meats, RTE meats and their related samples in Ghana are potential sources of antimicrobial-resistant E. coli and pose a risk for the transfer of resistant bacteria to the food chain, environment and humans.


Author(s):  
Asinamai Athliamai Bitrus ◽  
Peter Anjili Mshelia ◽  
Iliya Dauda Kwoji ◽  
Mohammed Dauda Goni ◽  
Saleh Mohammed Jajere

Antimicrobial resistance has gained global notoriety due to its public health concern, the emergence of multiple drug-resistant bacteria, and lack of new antimicrobials. Extended-spectrum beta-lactamase (ESBL)/ampicillin Class C (AmpC)- producing Escherichia coli and other zoonotic pathogens can be transmitted to humans from animals either through the food chain, direct contact or contamination of shared environments. There is a surge in the rate of resistance to medically important antibiotics such as carbapenem, ESBL, aminoglycosides, and fluoroquinolones among bacteria of zoonotic importance. Factors that may facilitate the occurrence, persistence and dissemination of ESBL/AmpC-Producing E. coli in humans and animal includes; 1). o ral administration of antimicrobials to humans primarily (by physician and health care providers) and secondarily to animals, 2). importation of parent stock and day-old chickens, 3). farm management practice and lack of water acidification in poultry, 4). contamination of feed, water and environment, 5). contamination of plants with feces of animals. Understanding these key factors will help reduce the level of resistance, thereby boosting the therapeutic effectiveness of antimicrobial agents in the treatment of animal and human infections. This review highlights the occurrence, risk factors, and public health importance of ESBL/AmpC-beta-lactamase producing E. coli isolated from livestock.


Animals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 970
Author(s):  
Alejandro Suárez-Pérez ◽  
Juan Alberto Corbera ◽  
Margarita González-Martín ◽  
José Antonio Donázar ◽  
Rubén Sebastián Rosales ◽  
...  

Due to their predatory habits, raptors may serve as indicators of the presence of antimicrobial-resistant bacteria in the environment, but they also represent a public health risk for livestock and humans because they can act as reservoirs, sources and spreaders of these bacteria. Our objective was to determine the presence of antimicrobial-resistant bacteria in cloacal samples of Canarian Egyptian vultures (Neophron percnopterus majorensis), an endemic bird of prey. One hundred and forty-two cloacal swabs were obtained; Escherichia coli was isolated from 80.28% and Salmonella from 6.3% of these samples. Low levels of susceptibility to ampicillin, tetracycline and trimethoprim/sulfamethoxazole were found. About 20% of the isolates were resistant or presented intermediate susceptibility to fluoroquinolones. Surprisingly, we found isolates resistant to imipenem (6.96%). Isolates from chicks were more susceptible to antimicrobial drugs than adult and immature birds. About 50% of E. coli isolates were resistant to ampicillin, tetracycline and trimethoprim/sulfamethoxazole, and about 20% to piperacillin, enrofloxacin and marbofloxacin. High percentages of isolates of Salmonella were found to be resistant to cephalexin (88%) and aminoglycosides (greater than 77%). Our results support the idea that raptors could act as reservoirs of Salmonella and antimicrobial-resistant bacteria, posing a risk not only to wildlife but also to livestock and the human population, thus reinforcing the need to minimize the exposure of wildlife to antimicrobial agent through human and livestock waste.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Eulalia de la Torre ◽  
Rocío Colello ◽  
Nora Lía Padola ◽  
Analía Etcheverría ◽  
Edgardo Rodríguez ◽  
...  

Integrons are one of the genetic elements involved in the acquisition of antibiotic resistance. The aim of the present research is to investigate the presence of integrons in commensalEscherichia coli(E. coli) strains, isolated from pigs at different stages of production system and from the environment in an Argentinian farm. Five sows postpartum and five randomly chosen piglets from each litter were sampled by rectal swabs. They were sampled again at day 21 and at day 70. Environmental samples from the farm were also obtained.E. colicontaining any integron class or combination of both integrons was detected by polymerase chain reaction in 100% of sows and in piglets at different stages of production: farrowing pen stage 68.1%;, weaning 60%, and growing/finishing 85.8%, showing an increase along the production system. From environmental samples 78.4% ofE. colicontaining any integron class was detected. We conclude that animals and farm environment can act as reservoirs for potential spread of resistant bacteria by means of mobile genetic elements as integrons, which has a major impact on production of food animals and that can reach man through the food chain, constituting a problem for public health.


2017 ◽  
Vol 14 (2) ◽  
pp. 271-275 ◽  
Author(s):  
M. A. Islam ◽  
S. M. L. Kabir ◽  
S. K. Seel

     The study was intended for molecular detection of E. coli isolated from raw cow’s milk. A total of 20 milk samples were collected from different upazila markets of Jamalpur, Tangail, Kishoreganj and Netrokona districts of Bangladesh. Milk samples were cultured onto various culture media for the isolation of bacteria. The isolated bacteria were identified by studying staining characteristics, cultural properties on different selective media, biochemical tests, catalase and coagulase test, and finally by PCR. Out of 20 samples, 15 (75%) milk samples were found positive for E. coli. 15 Escherichia coli isolates were amplified by 16S rRNA gene based PCR. Antimicrobial sensitivity test was carried out to ascertain the susceptibility of the organism to various antibiotics. Its results showed that the E. coli isolates were resistant to amoxycillin (86.67%) and erythromycin (73.33%) but sensitive to azithromycin (53.33%), ciprofloxacin (86.67%), gentamicin (86.67%), norfloxacin (80%) and streptomycin (66.67%).


Antibiotics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 402
Author(s):  
Frédéric Moffo ◽  
Mohamed Moctar Mouliom Mouiche ◽  
Hervé Kapnang Djomgang ◽  
Patchely Tombe ◽  
Abel Wade ◽  
...  

Residues of antimicrobials used in farm can exert selective pressure and accelerate the occurrence of multidrug resistant bacteria in litter. This study aimed to investigate the resistance profile of Escherichia coli isolated from poultry litter. A total of 101 E. coli strains was isolated from 229 litter samples collected and stored for two months in the laboratory at room temperature. Antimicrobial susceptibility testing was performed using the disk diffusion method. An overall resistance prevalence of 58.4% (95% CI: 48.8–68.0) was obtained with 59 E. coli strains resistant to various antimicrobial agents. High levels of resistance were observed with ciprofloxacin (21/59: 36%), imipenem (27/59: 45%), norfloxacin (44/59: 74%), ceftriaxone (44/59: 74%), and levofloxacin (44/59: 75%). These antimicrobials classified under the Watch group by WHO are indicators of the high AMR risk to public health in Cameroon. Multivariable logistic regression analysis revealed that a greater probability of high level of E. coli multidrug resistance was associated with lack of training in poultry farming (OR = 0.13, p = 0.01), less experience in poultry farming (OR = 11.66 p = 0.04), and the high frequency of digestive tract disease (OR = 0.10; p = 0.001). This study revealed that poultry litter constitutes a potential source of dissemination of resistant germs from farm animals to the environment and humans.


2020 ◽  
Vol 17 (4) ◽  
pp. 16-23
Author(s):  
R. O. Yakubu ◽  
M. K. Lawan ◽  
J. K. P. Kwaga ◽  
J. Kabir

Escherichia coli O157:H7 is a zoonotic enteric pathogen of public health significance worldwide. A cross-sectional study was carried out during which 384 faecal samples of household-reared small ruminants and water used in the various houses where the animals are reared were collected. The samples were enriched on tryptone soya broth and cultured on EMB and CT-SMAC to isolate E. coli and E. coli O157:H7 respectively; subjected to conventional biochemical tests and E. coliO157:H7 was confirmed using Wellcolex latex agglutination test kit. E. coli O157:H7 isolates were subjected to antimicrobial susceptibility test and multiplex PCR was carried out to detect the presence of virulence genes stx1, stx2, eaeA and hlyA. The results of the isolation showed isolation rate of E. coli O157:H7 of 4.69% (9/192), 0.52% (1/192) which were obtained from faeces and water samples respectively. The results of the characterisation showed that one of the E. coli O157:H7 isolated harboured the eaeA and hlyA genes but was negative for stx1 and stx2 genes. The highest number of isolates showed resistance to erythromycin (90.9%) while the least was to gentamicin (6.3%). About 97.7% (43/44) of the isolates had multiple antibiotic resistance index greater than 0.2. In conclusion, household-reared small ruminants in the study area were found to be reservoirs of E. coli O157:H7 and humans living within these households are at risk of infection. The multiple antibioticresistance recorded in this study suggests widespread use of antimicrobial drugs in the study area.


2020 ◽  
Vol 13 (10) ◽  
pp. 2156-2165
Author(s):  
Shah Jungy Ibna Karim ◽  
Mahfuzul Islam ◽  
Tahmina Sikder ◽  
Rubaya Rubaya ◽  
Joyanta Halder ◽  
...  

Background and Aim: Pigeon rearing has been gaining popularity for recent years. They are reared remarkably very close to the house of the owner. This activity, therefore, may pose potential threats for humans as well as other animals as pigeons may carry and spread different pathogens including drug-resistant bacteria. This study was conducted to explore the prevalence of Escherichia coli and Salmonella spp. as well as their antibiogram profile along with an association analysis. Materials and Methods: Forty swab samples were collected from 20 pigeons during the study. E. coli and Salmonella spp. were isolated and identified on various types of agars, including MacConkey, Eosin methylene blue, Brilliant green, and Salmonella-Shigella agar. Biochemical tests such as the carbohydrate fermentation test, the triple sugar iron agar slant reaction, the indole test, the methyl red test, the catalase test, as well as the Voges–Proskauer test were also performed. Besides, the presence of E. coli was further confirmed by polymerase chain reaction (PCR). Moreover, antimicrobial susceptibility testing of the isolates was performed against nine antibiotics from seven classes on the Mueller-Hinton agar based on the Kirby–Bauer disk diffusion method. Results: The overall prevalence of E. coli and Salmonella spp. was 52.5 and 27.5%, respectively. The prevalence of the pathogenic E. coli was 61.90%. The antibiogram profile of 21 E. coli as well as 11 Salmonella spp. revealed that all isolates, except one, were resistant to one to six antibiotics. Around 61.90%, 71.43%, 23.81%, 61.90%, 23.81%, 19.05%, and 52.38% of E. coli showed resistance against amoxicillin, ampicillin, azithromycin, erythromycin, nalidixic acid, gentamicin, and tetracycline, respectively. Furthermore, E. coli resistance was not observed in case of ciprofloxacin and levofloxacin. Similarly, around 36.36%, 27.27%, 27.27%, 45.45%, 81.82%, 100%, and 18.18% of the Salmonella spp. showed resistance against amoxicillin, ampicillin, azithromycin, erythromycin, nalidixic acid, tetracycline, and levofloxacin, respectively. However, all Salmonella spp. (100%) were found to show sensitivity against ciprofloxacin and gentamicin. Multidrug-resistant (MDR) E. coli (23.80%) and Salmonella spp. (54.54%) were also isolated. Furthermore, both positive (odds ratio [OR] >1) and negative (OR <1) drug resistance associations, with a higher frequency of positive associations, were found in E. coli. A significant positive association was observed between ampicillin and amoxicillin (OR: 81.67, 95% confidence interval: 2.73-2447.57, p=0.01). Conclusion: Pigeon carrying MDR E. coli and Salmonella spp. may contribute to the transmission and spread of these microorganisms. Therefore, strict hygienic measures should be taken during the farming of pigeons to decrease the potential transmission of E. coli and Salmonella spp. from pigeon to humans as well as other animals. So far, this is the first report of the PCR-based identification of pathogenic E. coli from pigeons in Bangladesh.


2018 ◽  
Vol 44 (1) ◽  
pp. 8
Author(s):  
Caroline Pissetti ◽  
Gabriela Orosco Werlang ◽  
Jalusa Deon Kich ◽  
Marisa Cardoso

Background: Antimicrobial resistant bacteria are considered a hazard not only for the treatment of animal diseases but also for public health. Commensal bacteria, such as Escherichia coli are considered a good indicator of antimicrobial resistance in the population, because it is a gut inhabitant and thus undergoes constant pressure of selection by the administration of antimicrobials. Regarding the public health, it is important to evaluate if resistant bacteria carried in the intestinal content of slaughter pigs can be found on the surface of pre chill carcasses. Therefore, the aims of this study were to evaluate the frequency of antimicrobial resistance in E. coli isolated from feces and pig carcasses; and to assess if multi-resistant isolates from both sources were phenotypically and genotypically related.Materials, Methods & Results: Two sampling cycles were conducted in three pig slaughterhouses (A, B and C). In each cycle, samples were collected form: i. feces deposited on the pen floor of the lairage; ii. surface of carcasses at the prechill step. Samples were submitted to a protocol of isolation and confirmation of Escherichia coli. Isolates were grouped according to the origin: feces (n = 355); carcasses (n = 319); and evaluated for antimicrobial resistance by agar diffusion test. Ninety two isolates presenting multidrug resistance profile were analyzed by pulsed-field gel eletrophoresis (PFGE). Among the 674 isolates of E. coli, 7.4% were susceptible to all tested antibiotics while 79.5% (536/674) were multi-resistant. The most frequent resistance patterns were displayed to tetracycline (Tet, 85.9%), ampicillin (Amp, 73.0%), sulfonamide (Sul, 70.0%), florfenicol (Flo, 65.0%) and nalidixic acid (Nal, 58.9%). The most frequent multi-resistance profile among isolates from both origins was [AmpFloNalSulTet]. Multiresistant isolates originated from feces and carcasses displaying genotypically related pulsotypes (≥70% similarity) were found in all three slaughterhouses.Discussion: In agreement with other studies, E. coli isolated from pig feces and carcasses demonstrated a high frequency of antimicrobial resistance and multi-resistance. The most frequent resistance profiles included antimicrobials frequently used on farm as well as drugs that have been banned as feed additives some years ago in Brazil. The selection of resistant strains may be related to the selection pressiondue to the use of antimicrobials in the pig production chain as well as the co-selection of resistance mediated by genes located in common genetic elements. Therefore, the ban of an individual drug is not always associated with the immediate disappearance of the resistance phenotype in the bacteria population. The fact that most multi-resistant E. coli isolates from carcasses belonged to pulsotypes related to those originated from feces samples indicates that resistant E. coli isolates selected on farm may be able to survive the slaughter process and be found on the carcass. In this case, the possibility of those strains being able to reach the population through the consumption of pork products may have to be considered. This hazard has motivated the ban of antimicrobial use in animals in some countries. However, the ban of antimicrobials use on farm is a controversial issue, due to the economical losses that may result from this measure. Therefore, the prudent use of antimicrobials on farm should be encouraged and its influence in the multi-resistance profile of the enteric microbiota should be further studied.


Sign in / Sign up

Export Citation Format

Share Document