Origin and Prevalence of Campylobaeter jejuni in Poultry Processing

1983 ◽  
Vol 46 (4) ◽  
pp. 339-344 ◽  
Author(s):  
J. OOSTEROM ◽  
S. NOTERMANS ◽  
HETTY KARMAN ◽  
G. B. ENGELS

Investigations of two chicken processing plants in The Netherlands have shown that large contamination with Campylobacter jejuni can exist on birds, equipment, hands of processing-line workers and in air samples from the processing facility. This contamination appeared only to be of intestinal origin. Intestinal contents of birds to be processed contained up to 107 C. jejuni per gram. Contamination of birds was reduced during scalding at 58°C, but this reduction was not always observed at 51.8°C. The number of C. jejuni on carcasses increased during defeathering and evisceration. Large numbers of C. jejuni were washed off the carcasses when a spinchiller was used. When air-cooling was employed, C. jejuni in some instances died off, probably due to drying. End-products from these chicken processing plants contained C. jejuni in 50% of carcasses and 75% of livers.

2011 ◽  
Vol 77 (16) ◽  
pp. 5722-5729 ◽  
Author(s):  
Karen T. Elvers ◽  
Victoria K. Morris ◽  
Diane G. Newell ◽  
Vivien M. Allen

ABSTRACTMany of the poultry flocks produced in the United Kingdom are colonized withCampylobacter, and the intensive nature of poultry processing usually results in contaminated carcasses. In this study, a previously reported molecular oligonucleotide probe method was used to track a specific flock-colonizing strain(s) on broiler carcasses during processing in two United Kingdom commercial poultry processing plants. FiveCampylobacter-positive flocks were sampled at four points along the processing line, postbleed, postpluck, prechill, and postchill, and twoCampylobacter-negative flocks processed immediately after positive flocks were sampled prechill.flaAwas sequenced fromCampylobacterstrains isolated from these flocks, and strain-specific probes were synthesized. Skin and cecal samples were plated onto selective agar to give individual colonies, which were transferred onto membranes. These were then hybridized with the strain- and genus-specific probes. For all the 5 positive flocks, there was a significant reduction in campylobacters postbleed compared to postpluck but no subsequent fall on sampling pre- and postchill, and the strain(s) predominating on the carcasses throughout processing came from the flock being processed. This indicates that strains from the abattoir environment were not a significant cause of carcass contamination in flocks with well-established campylobacter colonization. However, negative flocks that were preceded by positive flocks were contaminated by strains that did not generally originate from the predominating strains recovered from the ceca of the previous positive flocks. This suggests that the abattoir environment has a significant role in the contamination of carcasses from negative but not fully colonized flocks.


2014 ◽  
Vol 77 (3) ◽  
pp. 496-498 ◽  
Author(s):  
V. M. SOARES ◽  
J. G. PEREIRA ◽  
C. M. ZANETTE ◽  
L. A. NERO ◽  
J. P. A. N. PINTO ◽  
...  

Conveyor belts are widely used in food handling areas, especially in poultry processing plants. Because they are in direct contact with food and it is a requirement of the Brazilian health authority, conveyor belts are required to be continuously cleaned with hot water under pressure. The use of water in this procedure has been questioned based on the hypothesis that water may further disseminate microorganisms but not effectively reduce the organic material on the surface. Moreover, reducing the use of water in processing may contribute to a reduction in costs and emission of effluents. However, no consistent evidence in support of removing water during conveyor belt cleaning has been reported. Therefore, the objective of the present study was to compare the bacterial counts on conveyor belts that were or were not continuously cleaned with hot water under pressure. Superficial samples from conveyor belts (cleaned or not cleaned) were collected at three different times during operation (T1, after the preoperational cleaning [5 a.m.]; T2, after the first work shift [4 p.m.]; and T3, after the second work shift [1:30 a.m.]) in a poultry meat processing facility, and the samples were subjected to mesophilic and enterobacterial counts. For Enterobacteriaceae, no significant differences were observed between the conveyor belts, independent of the time of sampling or the cleaning process. No significant differences were observed between the counts of mesophilic bacteria at the distinct times of sampling on the conveyor belt that had not been subjected to continuous cleaning with water at 45°C. When comparing similar periods of sampling, no significant differences were observed between the mesophilic counts obtained from the conveyor belts that were or were not subjected to continuous cleaning with water at 45°C. Continuous cleaning with water did not significantly reduce microorganism counts, suggesting the possibility of discarding this procedure in chicken processing.


2002 ◽  
Vol 65 (6) ◽  
pp. 993-998 ◽  
Author(s):  
ARTHUR HINTON ◽  
J. A. CASON ◽  
KIMBERLY D. INGRAM

Yeasts associated with broiler carcasses taken from various stages of commercial poultry processing operations and broiler carcasses stored at refrigerated temperatures were enumerated and identified. Whole carcass rinses were performed to recover yeasts from carcasses taken from a processing facility and processed carcasses stored at 4°C for up to 14 days. Yeasts in the carcass rinsates were enumerated on acidified potato dextrose agar and identified with the MIDI Sherlock Microbial Identification System. Dendrograms of fatty acid profiles of yeast were prepared to determine the degree of relatedness of the yeast isolates. Findings indicated that as the carcasses are moved through the processing line, significant decreases in the number of yeasts associated with broiler carcasses usually occur, and the composition of the yeast flora of the carcasses is altered. Significant (P < 0.05) increases in the yeast population of the carcasses generally occur during storage at 4°C, however. Furthermore, it was determined that the same strain of yeast may be recovered from different carcasses at different points in the processing line and that the same strain of yeast may be isolated from carcasses processed on different days in the same processing facility.


2001 ◽  
Vol 64 (3) ◽  
pp. 388-391 ◽  
Author(s):  
P. WHYTE ◽  
J. D. COLLINS ◽  
K. McGILL ◽  
C. MONAHAN ◽  
H. O'MAHONY

Airborne microbial contaminants and indicator organisms were monitored within three poultry processing plants (plants A, B, and C). In total, 15 cubic feet (c.f.) of air was sampled per location during 15 visits to each plant and quantitatively analyzed for total mesophilic and psychrophilic aerobic counts, thermophilic campylobacters, Escherichia coli, and Enterobacteriaceae. The prevalence of Salmonella spp. in air samples was also evaluated. Significant reductions in total aerobic counts were observed between defeathering and evisceration areas of the three plants (P < 0.05). Mesophilic plate counts were highest in the defeathering areas of all plants compared to equivalent psychrophilic plate counts. Enterobacteriaceae counts were highest in the defeathering areas of all three plants with counts of log10 1.63, 1.53, and 1.18 CFU/15 c.f. recovered in plants A, B, and C, respectively. E. coli enumerated from air samples in the defeathering areas exhibited a similar trend to those obtained for Enterobacteriaceae with log10 1.67, 1.58, and 1.18 CFU for plants A, B, and C, respectively. Thermophilic campylobacters were most frequently isolated from samples in the defeathering areas followed by the evisceration areas. The highest mean counts of the organism were observed in plant A at 21 CFU/15 c.f. sample with plants B and C at 9 and 8 CFU/sample, respectively. With the exception of low levels of Enterobacteriaceae recovered from samples in the on-line air chill in plant A, E. coli, Enterobacteriaceae, or Campylobacter spp. were not isolated from samples in postevisceration sites in any of the plants examined. Salmonella spp. were not recovered from any samples during the course of the investigation.


Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 491
Author(s):  
Alejandra Ramirez-Hernandez ◽  
Ana K. Carrascal-Camacho ◽  
Andrea Varón-García ◽  
Mindy M. Brashears ◽  
Marcos X. Sanchez-Plata

The poultry industry in Colombia has implemented several changes and measures in chicken processing to improve sanitary operations and control pathogens’ prevalence. However, there is no official in-plant microbial profile reference data currently available throughout the processing value chains. Hence, this research aimed to study the microbial profiles and the antimicrobial resistance of Salmonella isolates in three plants. In total, 300 samples were collected in seven processing sites. Prevalence of Salmonella spp. and levels of Enterobacteriaceae were assessed. Additionally, whole-genome sequencing was conducted to characterize the isolated strains genotypically. Overall, the prevalence of Salmonella spp. in each establishment was 77%, 58% and 80% for plant A, B, and C. The mean levels of Enterobacteriaceae in the chicken rinsates were 5.03, 5.74, and 6.41 log CFU/mL for plant A, B, and C. Significant reductions were identified in the counts of post-chilling rinsate samples; however, increased levels were found in chicken parts. There were six distinct Salmonella spp. clusters with the predominant sequence types ST32 and ST28. The serotypes Infantis (54%) and Paratyphi B (25%) were the most commonly identified within the processing plants with a high abundance of antimicrobial resistance genes.


2009 ◽  
Vol 8 (10) ◽  
pp. 939-945 ◽  
Author(s):  
D.M. Paiva ◽  
M. Singh ◽  
K.S. Macklin ◽  
S.B. Price ◽  
J.B. Hess ◽  
...  

2008 ◽  
Vol 52 (No. 6) ◽  
pp. 262-266 ◽  
Author(s):  
E. Voslarova ◽  
B. Janackova B ◽  
F. Vitula ◽  
A. Kozak ◽  
V. Vecerek

Poor welfare is the cause of high mortality among hens and roosters transported to poultry processing plants. In the Czech Republic, death rates among hens and roosters in transport to poultry slaughter plants were monitored between 1997 and 2004, and their total mortality rate was in the 0.925% ± 0.479% range. Death rates among hens and roosters were influenced by the transport distance to poultry processing plants. The percentage of dead birds increased from 0.592% ± 0.575% at transport distances up to 50 km to 1.638% ± 0.952% at transport distances up to 300 km. The bird mortality was also influenced by the season of the year. Higher mortality rates were ascertained during the cold months of the year, specifically in October through to April.


Pathogens ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 250 ◽  
Author(s):  
Daniel Rodríguez-Campos ◽  
Cristina Rodríguez-Melcón ◽  
Carlos Alonso-Calleja ◽  
Rosa Capita

Some strains of Listeria monocytogenes can persist in food-processing environments, increasing the likelihood of the contamination of foodstuffs. To identify traits that contribute to bacterial persistence, a selection of persistent and sporadic L. monocytogenes isolates from a poultry-processing facility was investigated for biofilm-forming ability (crystal violet assay). The susceptibility of sessile cells to treatments (five minutes) with sodium hypochlorite having 10% active chlorine (SHY: 10,000 ppm, 25,000 ppm, and 50,000 ppm) and benzalkonium chloride (BZK: 2500 ppm, 10,000 ppm, and 25,000 ppm) was also studied. All isolates exhibited biofilm formation on polystyrene. Persistent strains showed larger (p < 0.001) biofilm formation (OD580 = 0.301 ± 0.097) than sporadic strains (OD580 = 0.188 ± 0.082). A greater susceptibility to disinfectants was observed for biofilms of persistent strains than for those of sporadic strains. The application of SHY reduced biofilms only for persistent strains. BZK increased OD580 in persistent strains (2500 ppm) and in sporadic strains (all concentrations). These results indicate that the use of BZK at the concentrations tested could represent a public health risk. Findings in this work suggest a link between persistence and biofilm formation, but do not support a relationship between persistence and the resistance of sessile cells to disinfectants.


2019 ◽  
Vol 100 ◽  
pp. 00066 ◽  
Author(s):  
Jacek Potorski ◽  
Izabela Koniuszewska ◽  
Małgorzata Czatzkowska ◽  
Monika Harnisz

Wastewater treatment plants (WWTPs) and municipal waste management plants (MWMPs) emit bioaerosols containing potentially pathogenic biological components which post a threat for human health. Microbiological monitoring supports evaluations of the antibiotic resistance (AR) of airborne microorganisms and the relevant health risks. The aim of this study was to analyze the microbiological quality of air sampled in a WWTP and MWMP in Olsztyn based on total bacterial counts, the presence of bacteria resistant to three antibiotic classes (beta-lactams, tetracyclines and chloramphenicol) and genes encoding resistance to these antibiotics (blaTEM, blaSHV, blaCMY-2, blaAmpC, tet(M), tet(A), tet(X), tet(B), cmlA, floR, fexA, fexB and catA1 ). Bacterial counts were higher in air samples collected from the MWMP (~104 CFU/m3) than from the WWTP (101–103 CFU/m3). A similar trend was noted in the counts of antibiotic resistant bacteria (ARB). The abundance of ARB did not exceed 1.7 x 102 CFU/m3 in WWTP samples, but was higher at up to 4.2 x 103 CFU/m3 in MWMP samples. Bacteria resistant to doxycycline were least prevalent in the analyzed ARB. In the group of 49 tested bacterial strains, 44 harbored at least one of the analyzed antibiotic resistance genes (ARGs). A comparison of ARGs in all bacterial strains isolated from WWTP and MWMP air samples revealed the highest diversity and prevalence of ARGs in the samples collected in the mechanical segment of the waste processing line in MWMP and the biological segment of the wastewater processing line in WWTP. The results of this study point to high microbiological contamination of air in MWMPs and WWTPs which are reservoirs of ARB and ARGs and potential sources of AR.


Sign in / Sign up

Export Citation Format

Share Document