Control of Bacterial Pathogens during Processing of Cold-Smoked and Dried Salmon Strips

2004 ◽  
Vol 67 (2) ◽  
pp. 347-351 ◽  
Author(s):  
M. W. EKLUND ◽  
M. E. PETERSON ◽  
F. T. POYSKY ◽  
R. N. PARANJPYE ◽  
G. A. PELROY

Microbiological and chemical changes were determined during the smoking and drying of salmon strips processed at 29 to 31°C for 4 days at a facility in Alaska in 1993. During the process, Staphylococcus aureus populations increased to more than 105 CFU/g after 2 to 3 days of processing. Subsequent laboratory studies showed that a pellicle (dried skinlike surface) formed rapidly on the strips when there was rapid air circulation in the smokehouse and that bacteria embedded in or under the pellicle were able to grow even when heavy smoke deposition occurred. Under these conditions, an inoculum of 26 CFU/g of S. aureus increased to 105 CFU/g after 3 days of processing. Elimination of preprocess drying and reduction in air flow during smoking resulted in smoke deposition before pellicle formation and enabled the product to reach levels of water-phase salt and water activity that inhibit the growth of S. aureus and Listeria monocytogenes. In 1994, these modifications were then applied during processing at an Alaskan facility, and S. aureus could not be detected in the finished product. L. monocytogenes was detected in the raw product area, on the processing tables, and on the raw salmon strips, but it was not detected in the finished product when the smoke was applied before pellicle formation.

2014 ◽  
Vol 77 (8) ◽  
pp. 1275-1288 ◽  
Author(s):  
WAN MEI LEONG ◽  
RENAE GEIER ◽  
SARAH ENGSTROM ◽  
STEVE INGHAM ◽  
BARBARA INGHAM ◽  
...  

Potentially hazardous foods require time/temperature control for safety. According to the U.S. Food and Drug Administration Food Code, most cheeses are potentially hazardous foods based on pH and water activity, and a product assessment is required to evaluate safety of storage >6 h at 21°C. We tested the ability of 67 market cheeses to support growth of Listeria monocytogenes (LM), Salmonella spp. (SALM), Escherichia coli O157:H7 (EC), and Staphylococcus aureus (SA) over 15 days at 25°C. Hard (Asiago and Cheddar), semi-hard (Colby and Havarti), and soft cheeses (mozzarella and Mexican-style), and reduced-sodium or reduced-fat types were tested. Single-pathogen cocktails were prepared and individually inoculated onto cheese slices (~105 CFU/g). Cocktails were 10 strains of L. monocytogenes, 6 of Salmonella spp., or 5 of E. coli O157:H7 or S. aureus. Inoculated slices were vacuum packaged and stored at 25°C for ≤15 days, with surviving inocula enumerated every 3 days. Percent salt-in-the-moisture phase, percent titratable acidity, pH, water activity, and levels of indigenous/starter bacteria were measured. Pathogens did not grow on 53 cheeses, while 14 cheeses supported growth of SA, 6 of SALM, 4 of LM, and 3 of EC. Of the cheeses supporting pathogen growth, all supported growth of SA, ranging from 0.57 to 3.08 log CFU/g (average 1.70 log CFU/g). Growth of SALM, LM, and EC ranged from 1.01 to 3.02 log CFU/g (average 2.05 log CFU/g), 0.60 to 2.68 log CFU/g (average 1.60 log CFU/g), and 0.41 to 2.90 log CFU/g (average 1.69 log CFU/g), respectively. Pathogen growth varied within cheese types or lots. Pathogen growth was influenced by pH and percent salt-in-the-moisture phase, and these two factors were used to establish growth/no-growth boundary conditions for safe, extended storage (≤25°C) of pasteurized milk cheeses. Pathogen growth/no-growth could not be predicted for Swiss-style cheeses, mold-ripened or bacterial surface–ripened cheeses, and cheeses made with nonbovine milk, as insufficient data were gathered. This challenge study data can support science-based decision making in a regulatory framework.


2011 ◽  
Vol 236-238 ◽  
pp. 2803-2809
Author(s):  
Ai Li ◽  
Guo Xing Yang ◽  
Wei Zhang

To establish a rapid, sensitive and specific multiplex PCR method for the simultaneous detection ofStaphylococcus aureus,Salmonellaspp, andlisteria monocytogenes. Three pairs of primers have been designed according to theStaphylococcus aureusnucgene,Salmonellaspp IpaBgene,listeria monocytogenes inlAgene. Orthogonal experimental design was used to determine Multiplex PCR amplification system for Food-borne Bacterial Pathogens of four factors (Taq DNA polymerase, Mg2+, dNTP and primers) from four levels; three DNA fragments of 210bp,280bp and 476bp were amplified. The specificity and the sensitivity of this method was valued. Template was prepared using FTA filter; the three food-borne Bacterial Pathogens were simultaneously detected by the multiplex PCR technology which have been designed; The sensitivity of this method was 3.0×102cfu/mL forStaphylococcus aureus, 2.0×102cfu/mL forSalmonellaspp, and 3.5×102cfu/mL forlisteria monocytogenes. This method lies on its accuracy, rapidity and efficiency in the diagnosis, so it could be a useful method for the simultaneous detection of the three species of bacteria in food.


2010 ◽  
Vol 73 (11) ◽  
pp. 2034-2042 ◽  
Author(s):  
SARAH DIERSCHKE ◽  
STEVEN C. INGHAM ◽  
BARBARA H. INGHAM

Adequate lethality in jerky manufacture destroys appropriate levels of Escherichia coli O157:H7, Salmonella, Listeria monocytogenes, and Staphylococcus aureus. Our goal was to evaluate the lethality of four home-style dehydrator processes against these pathogens. Whole-muscle beef strips were inoculated with L. monocytogenes (five strains), S. aureus (five strains), or a mixed inoculum of E. coli O157:H7 (five strains) and Salmonella (eight strains). After allowing for attachment, strips were marinated in Colorado-, Original-, or Teriyaki-seasoned marinade for 22 to 24 h and dried in three home-style dehydrators (Garden Master, Excalibur, and Jerky Xpress) at 57.2 to 68.3°C. Samples were taken postmarination; after 4, 6, and 8 h of drying; and after drying, followed by heating for 10 min in a 135°C oven. Surviving inocula were enumerated. With a criterion of ≥5.0-log CFU/cm2 reduction as the standard for adequate process lethality, none of the samples achieved the target lethality for any pathogen after 4 h of drying, even though all samples appeared “done” (water activity of less than 0.85). A postdehydration oven-heating step increased the proportion of samples meeting the target lethality after 4 h of drying to 71.9, 88.9, 55.6, and 77.8% for L. monocytogenes-, S. aureus-, E. coli O157:H7-, and Salmonella-inoculated samples, respectively, and after an 8-h drying to 90.6, 94.4, 83.3, and 91.7% of samples, respectively. Significantly greater lethality was seen with higher dehydrator temperature and significantly lower with Teriyaki-marinated samples. Heating jerky dried in a home-style dehydrator for 10 min in a 135°C oven would be an effective way to help ensure safety of this product.


2019 ◽  
Vol 9 (02) ◽  
Author(s):  
Hussein A Kadhum ◽  
Thualfakar H Hasan2

The study involved the selection of two isolates from Bacillus subtilis to investigate their inhibitory activity against some bacterial pathogens. B sub-bacteria were found to have a broad spectrum against test bacteria such as Staphylococcus aureus and Pseudomonas aeruginosa. They were about 23-30 mm and less against Klebsiella sp. The sensitivity of some antibodies was tested on the test samples. The results showed that the inhibitory ability of bacterial growth in the test samples using B. subtilis extract was more effective than the antibiotics used.


2020 ◽  
Vol 36 (2) ◽  
pp. 75-85
Author(s):  
R.Z. Aкhunov ◽  

The article presents the modernization of the design of the universal seed mordant PSS-20 by installing an axial fan and air ducts for closed air circulation in the processing chamber, which will ensure the full use of the mordant, work safety and increase the productivity of cultivated crops. The main advantage of this design is that the seeds in the same plane as the suspension flow is affected by the air flow, which improves the penetration into the layer. Air ducts make it possible to reuse the suspension that has not settled on the seeds. This is achieved due to the closed lid design. During operation, the fan creates excessive pressure inside the seed stream and rarefaction outside, and so small drops of solution that have penetrated the seed stream are sucked in by the fan and re-fed into the stream.


Antibiotics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 594
Author(s):  
Sydney E. Schnur ◽  
Raghavendra G. Amachawadi ◽  
Giovanna Baca ◽  
Sarah Sexton-Bowser ◽  
Davina H. Rhodes ◽  
...  

Antimicrobial resistance in bacterial pathogens associated with bovine mastitis and human foodborne illnesses from contaminated food and water have an impact on animal and human health. Phenolic compounds have antimicrobial properties and some specialty sorghum grains are high in phenolic compounds, and the grain extract may have the potential as a natural antimicrobial alternative. The study’s objective was to determine antimicrobial effects of sorghum phenolic extract on bacterial pathogens that cause bovine mastitis and human foodborne illnesses. Bacterial pathogens tested included Escherichia coli, Salmonella Typhimurium, Campylobacter jejuni, Campylobacter coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Klebsiella oxytoca, Staphylococcus aureus, and Enterococcus faecalis. Antibacterial activities of sorghum phenolic extracts were determined by agar-well diffusion assay. Sorghum phenolic extract was added to the wells in concentrations of 0, 100, 200, 500, 1000, or 4000 µg/mL. The control wells did not receive phenolic extract. Plates were incubated for 18–24 h, and the diameter of each zone of inhibition was measured. The results indicated that sorghum phenolic extract had inhibitory effects on Staphylococcus aureus, Enterococcus faecalis, Campylobacter jejuni, and Campylobacter coli.


Pathogens ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 110
Author(s):  
Anna K. Riebisch ◽  
Sabrina Mühlen ◽  
Yan Yan Beer ◽  
Ingo Schmitz

Autophagy is a highly conserved and fundamental cellular process to maintain cellular homeostasis through recycling of defective organelles or proteins. In a response to intracellular pathogens, autophagy further acts as an innate immune response mechanism to eliminate pathogens. This review will discuss recent findings on autophagy as a reaction to intracellular pathogens, such as Salmonella typhimurium, Listeria monocytogenes, Mycobacterium tuberculosis, Staphylococcus aureus, and pathogenic Escherichia coli. Interestingly, while some of these bacteria have developed methods to use autophagy for their own benefit within the cell, others have developed fascinating mechanisms to evade recognition, to subvert the autophagic pathway, or to escape from autophagy.


1987 ◽  
Vol 50 (3) ◽  
pp. 212-217 ◽  
Author(s):  
S. L. CUPPETT ◽  
J. I. GRAY ◽  
J. J. PESTKA ◽  
A. M. BOOREN ◽  
J. F. PRICE ◽  
...  

The effect of salt level and nitrite on botulinal safety of smoked whitefish was investigated. An average water-phase (wp) salt concentration of 4.4% inhibited outgrowth of Clostridium botulinum type E spores (103 spores/g) for over 35 d in temperature-abused (27°C) smoked whitefish. Incorporation of nitrite (220 mg/kg) during brining to the smoked salted (4.4%, wp) whitefish inhibited toxin production for 56 d at 27°C. An average salt concentration of 6.2% (wp), with or without nitrite, totally inhibited toxin production for the duration of the study (83 d). The effect of pH and water activity in temperature-abused smoked whitefish as a means of controlling toxin production by C. botulinum type E spores was evaluated.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Satoko Hiura ◽  
Shige Koseki ◽  
Kento Koyama

AbstractIn predictive microbiology, statistical models are employed to predict bacterial population behavior in food using environmental factors such as temperature, pH, and water activity. As the amount and complexity of data increase, handling all data with high-dimensional variables becomes a difficult task. We propose a data mining approach to predict bacterial behavior using a database of microbial responses to food environments. Listeria monocytogenes, which is one of pathogens, population growth and inactivation data under 1,007 environmental conditions, including five food categories (beef, culture medium, pork, seafood, and vegetables) and temperatures ranging from 0 to 25 °C, were obtained from the ComBase database (www.combase.cc). We used eXtreme gradient boosting tree, a machine learning algorithm, to predict bacterial population behavior from eight explanatory variables: ‘time’, ‘temperature’, ‘pH’, ‘water activity’, ‘initial cell counts’, ‘whether the viable count is initial cell number’, and two types of categories regarding food. The root mean square error of the observed and predicted values was approximately 1.0 log CFU regardless of food category, and this suggests the possibility of predicting viable bacterial counts in various foods. The data mining approach examined here will enable the prediction of bacterial population behavior in food by identifying hidden patterns within a large amount of data.


Sign in / Sign up

Export Citation Format

Share Document