Evaluation of Gaseous Ozone and Hydrogen Peroxide Treatments for Reducing Fusarium Survival in Malting Barley

2005 ◽  
Vol 68 (6) ◽  
pp. 1236-1240 ◽  
Author(s):  
BALASUBRAHMANYAM KOTTAPALLI ◽  
CHARLENE E. WOLF-HALL ◽  
PAUL SCHWARZ

The use of Fusarium-infected barley for malting can lead to mycotoxin production and decreased malt quality. Methods for treatment of Fusarium-infected barley might prevent these safety and quality defects and allow use of otherwise good-quality barley. Gaseous ozone and hydrogen peroxide (HP) were evaluated for effectiveness in reducing Fusarium survival while maintaining germinative energy (GE) in barley. Gaseous ozone treatments (GOT) included concentrations of 11 and 26 mg/g for 0, 15, 30, and 60 min. HP treatments included 0, 5, 10, and 15% concentrations with exposure times of 0, 5, 10, 15, 20, and 30 min. For GOT, in naturally Fusarium-infected barley, a statistically significant (P < 0.05) decrease (24 to 36%) of Fusarium survival occurred within 15 min of exposure at either concentration. GE was significantly (P < 0.05) affected by 30 min at both concentrations in naturally Fusarium-infected barley, but not in sound barley. GOT did not cause any significant (P > 0.05) effect on GE in sound barley at either concentration over the full 30-min exposure time. For HP, Fusarium survival was significantly decreased (50 to 98%) within 5 min of exposure. With the exception of two treatments (10 and 15% HP agitated for 20 min), GE was not statistically significantly different from the control in naturally Fusarium-infected barley. In sound barley, HP had no significant (P > 0.05) effect on GE. The results suggest that GOT and HP might have potential for treatment of Fusarium-infected malting barley.

2011 ◽  
Vol 74 (12) ◽  
pp. 2134-2141 ◽  
Author(s):  
JAMES G. DODD ◽  
ANURADHA VEGI ◽  
ASHWINI VASHISHT ◽  
DENNIS TOBIAS ◽  
PAUL SCHWARZ ◽  
...  

Molds and their mycotoxins are an expensive problem for the malting and brewing industries. Deoxynivalenol (DON) is a mycotoxin that is associated with Fusarium spp. These fungi frequently cause Fusarium head blight in wheat and barley in the midwestern region of the United States; Manitoba, Canada; Europe; and China. Barley growers and malt producers would benefit from a postharvest control method for mold growth and DON production. We evaluated the use of gaseous ozone (O3) for preventing Fusarium growth and mycotoxin production while maintaining malt quality characteristics. Micromalting was performed in three replications under standard conditions. Ozone treatment was applied to malting barley during steeping via a submerged gas sparger. Ozone treatment conditions were 26 mg/cm3 for 120 min after 2 and 6 h of steeping. The effects of gaseous ozone on DON, aerobic plate counts, Fusarium infection, and mold and yeast counts of barley throughout the malting process were measured. Various quality parameters of the malt were measured after kilning. Statistical tools were used to determine the significance of all results. Ozonation of malting barley during steeping did not lead to significant reductions in aerobic plate counts but did lead to a 1.5-log reduction in mold and yeast counts in the final malt. The influence of gaseous ozone on DON concentration was inconclusive because of the low initial concentrations of DON in the barley. Ozone significantly reduced Fusarium infection in germinated barley. Gaseous ozone did not negatively influence any aspect of malt quality and may have subtle beneficial effects on diastatic power and β-glucan concentrations.


Author(s):  
Matthias Baldus ◽  
Florian Heukäufer ◽  
Carla Großpietsch ◽  
Frank-Jürgen Methner

2009 ◽  
Vol 27 (No. 6) ◽  
pp. 454-462 ◽  
Author(s):  
M.A. Martínez-Téllez ◽  
F.J. Rodríguez-Leyva ◽  
I.E. Espinoza-Medina ◽  
I. Vargas-Arispuro ◽  
A.A. Gardea ◽  
...  

The absence of good agricultural and manufacturing practices in the production and postharvest handling of fresh produce, such as green asparagus or green onions increase the contamination risk by biological hazards like Salmonella. The objective of this work was to investigate the efficacy of chlorine (200 and 250 ppm), hydrogen peroxide (1.5% and 2%), and lactic acid (1.5% and 2%) sanitisers during different exposure times (40, 60, and 90 s) on the reduction of <i>Salmonella enterica</i> subspecie <i>enterica</i> serovar Typhimurium in inoculated fresh green asparagus and green onions. Washing with clean water only reduced < 1 log10 CFU/g in both vegetables. The most effective sanitiser evaluated for fresh green asparagus and green onions disinfection appeared to be 2% lactic acid reducing <i>Salmonella</i> growth close to 3 log<sub>10</sub> CFU/g. Hydrogen peroxide was the least effective agent for <i>Salmonella</i> Typhimurium reduction. No effect was observed of the exposure time of inoculated product to sanitiser up to 90 seconds. These results confirm that lactic acid could be used as an alternative for fresh green asparagus and green onions sanitation.


2018 ◽  
Vol 197 ◽  
pp. 02013 ◽  
Author(s):  
Andi Wibowo Kinandana ◽  
Sumariyah Sumariyah ◽  
Muhammad Nur

Plasma-activated medium (PAM) has been produced by exposing a liquid media to Argon plasma jet. The jet plasma exposure to liquid media has produced reactive Oxygen species (ROS) in liquid phase. This study aims to determine the number of reactive species in plasma-activated medium. An atmospheric pressure plasma jet (APPJ) was generated with a dielectric barrier discharge (DBD) column by AC high voltage. Some parameters varied including exposure time; i.e. 5, 10, 15, 20, 25, and 30 min; and the distance between reactor and active media; i.e. 1, 2 and 3 cm. Some analysis conducted including variation of exposure times, the distances of reactor to PAM which affect produced concentration, and the reactive species composition in plasma-activated medium. In addition, temperature characteristics, pH levels, dissolved ozone and dissolved hydrogen peroxide concentrations were also observed in this study. The results showed that increased exposure time resulted in decreased pH, increased temperature and increased concentrations of ozone and hydrogen peroxide. The maximum reactive species composition was obtained at the distance between reactor and plasma-activated medium of 2 cm. Maximum reactive species composition obtained in this study has temperature of 29-30 Celsius degrees; pH 3.5; dissolved ozone 2.97 ppm; and Hydrogen Peroxide 215 ppm.


2020 ◽  
Vol 100 (6) ◽  
pp. 653-665
Author(s):  
B.D. Tidemann ◽  
J.T. O’Donovan ◽  
M. Izydorczyk ◽  
T.K. Turkington ◽  
L. Oatway ◽  
...  

Malting barley is important in western Canada, yet many malting cultivars do not meet malt quality standards, in part due to lodging. Lodging can decrease barley yield and quality thereby reducing the acceptability for malting. In other countries, plant growth regulator (PGR) applications are used to mitigate lodging. Chlormequat chloride (chlormequat), trinexapac-ethyl (trinexapac), and ethephon were tested at five locations over 3 yr in western Canada for their ability to limit lodging, as well as their effects on yield, agronomic traits, and pre-malt quality characteristics. PGR applications occurred between Zadoks growth stage (GS) 30–33 for chlormequat and trinexapac and GS 37–49 for ethephon. Seeding rates of 200, 300, and 400 seeds m−2 of CDC Copeland barley were used to increase the likelihood of lodging. Increased seeding rate decreased tillers per plant, height, days to maturity, kernel protein, and kernel weight. Ethephon increased the number of tillers per plant and decreased plant height, kernel plumpness, and kernel weight. Trinexapac decreased plant height and kernel weight. Days to maturity was investigated across site-years, with ethephon increasing maturity in 60% of comparisons. Trinexapac and chlormequat had limited effects on maturity. Lodging was investigated across site-years, with trinexapac showing the largest number of lodging reductions and scale of reductions. Ethephon reduced lodging in 36% of comparisons, while chlormequat had inconsistent effects. None of the products affected yield or grain protein. The results suggest PGRs may not be the solution to lodging for CDC Copeland barley on the Canadian Prairies; however, trinexapac shows the most promise of the products tested.


2020 ◽  
Vol 9 (5) ◽  
pp. e196953445
Author(s):  
Clarissa Maia de Aquino ◽  
Vildes Maria Scussel

The aim of this study was to investigate the antifungal effect of ozone gas (O3) (green decontamination agent) on mackerel fish (Acanthocybium solandri) in different types of preservation (fresh, dry and salted). Samples humidity [mc / aw] parameters prior gas treatment, were of 80.7%/0.98, 55.55%/0.74 and 49.5%/0.70, respectively. Fish were contaminated with fungi genera that are able to grow on high (Fusarium) and low (Aspergillus / Penicilliun) moisture content substrates, then gas treated at 50 μmol O3 /mol, exposed during 10, 20 and 30 min, and incubated (25ºC, 7 days) to evaluate fungal inactivation. The O3 treated samples, when O3 exposed during the longest time (30 min/Day 7th) had the fungal growth totally inhibited (100%), while the others presented only reduced growth effect, i.e; 40 and 70 % for 10 and 20 min, respectively. Fusarium spores were not able to grow in any of the protein based sample studied (both, Control & Treated Group). On the other hand, Aspergillus and Penicilliun although grew on Control and some treated ones, their growth was inhibited by O3 depending on exposure time. That gas showed (under the conditions applied) to be fungi control effective for mackerel different forms of conservation.


2020 ◽  
Vol 17 (4) ◽  
pp. 1177
Author(s):  
Ban Jasim ◽  
Mustafa Al-Furaiji ◽  
Ali Sekran ◽  
Waleed Abdullah

          In this study, ultraviolet (UV), ozone techniques with hydrogen peroxide oxidant were used to treat the wastewater which is produced from South Baghdad Power Station using lab-scale system. From UV-H2O2 experiments, it was shown that the optimum exposure time was 80 min. At this time, the highest removal percentages of oil, COD, and TOC were 84.69 %, 56.33 % and 50 % respectively. Effect of pH on the contaminants removing was studied in the range of (2-12). The best oil, COD, and TOC removal percentages (69.38 %, 70 % and 52 %) using H2O2/UV were at pH=12. H2O2/ozone experiments exhibited better performance compared to the H2O2/UV experiments. The results showed that 20 min was the best exposure time with removal percentages of 89.79 %, 83.33 % and 70% for oil, COD and TOC, respectively, and the optimum value of pH was at pH=8, where the pollutants removal percentages (i.e. 74.48 %, 80 % and 73.33 % respectively for the same previous pollutants). H2O2/ozone experiments showed better removal efficiency than the H2O2/UV experiments.


Sign in / Sign up

Export Citation Format

Share Document