scholarly journals Downregulation of PyHRG1, encoding a novel secretory protein in the red alga Pyropia yezoensis, enhances heat tolerance

ALGAE ◽  
2021 ◽  
Vol 36 (3) ◽  
pp. 207-217
Author(s):  
Narae Han ◽  
Jiwoong Wi ◽  
Sungoh Im ◽  
Ka-Min Lim ◽  
Hun-Dong Lee ◽  
...  

An increase in seawater temperature owing to global warming is expected to substantially limit the growth of marine algae, including Pyropia yezoensis, a commercially valuable red alga. To improve our knowledge of the genes involved in the acquisition of heat tolerance in P. yezoensis, transcriptomes sequences were obtained from both the wild-type SG104 P. yezoensis and heat-tolerant mutant Gy500. We selected 1,251 differentially expressed genes that were up- or downregulated in response to the heat stress condition and in the heat-tolerant mutant Gy500, based on fragment per million reads expression values. Among them, PyHRG1 was downregulated under heat stress in SG104 and expressed at a low level in Gy500. PyHRG1 encodes a secretory protein of 26.5 kDa. PyHRG1 shows no significant sequence homology with any known genes deposited in public databases to date. However, PyHRG1 homologs were found in other red algae, including other Pyropia species. When PyHRG1 was introduced into the single-cell green alga Chlamydomonas reinhardtii, transformed cells overexpressing PyHRG1 showed severely retarded growth. These results demonstrate that PyHRG1 encodes a novel red algae-specific protein and plays a role in heat tolerance in algae. The transcriptome sequences obtained in this study, which include PyHRG1, will facilitate future studies to understand the molecular mechanisms involved in heat tolerance in red algae.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sherzod Nigmatullayevich Rajametov ◽  
Eun Young Yang ◽  
Myeong Cheoul Cho ◽  
Soo Young Chae ◽  
Hyo Bong Jeong ◽  
...  

AbstractUnderstanding the mechanism for heat tolerance is important for the hot pepper breeding program to develop heat-tolerant cultivars in changing climate. This study was conducted to investigate physiological and biochemical parameters related to heat tolerance and to determine leaf heat damage levels critical for selecting heat-tolerant genotypes. Seedlings of two commercial cultivars, heat-tolerant ‘NW Bigarim’ (NB) and susceptible ‘Chyung Yang’ (CY), were grown in 42 °C for ten days. Photosynthesis, electrolyte conductivity, proline content were measured among seedlings during heat treatment. Photosynthetic rate was significantly reduced in ‘CY’ but not in ‘NB’ seedlings in 42 °C. Stomatal conductivity and transpiration rate was significantly higher in ‘NB’ than ‘CY’. Proline content was also significantly higher in ‘NB’. After heat treatment, leaf heat damages were determined as 0, 25, 50 and 75% and plants with different leaf heat damages were moved to a glasshouse (30–32/22–24 °C in day/night). The growth and developmental parameters were investigated until 70 days. ‘NB’ was significantly affected by leaf heat damages only in fruit yield while ‘CY’ was in fruit set, number and yield. ‘NB’ showed fast recovery after heat stress compared to ‘CY’. These results suggest that constant photosynthetic rate via increased transpiration rate as well as high proline content in heat stress condition confer faster recovery from heat damage of heat-tolerant cultivars in seedlings stages.


Author(s):  
Sherzod Rajametov ◽  
Eun Young Yang ◽  
Myeong Cheoul Cho ◽  
Soo Young Chae ◽  
Hyo Bong Jeong ◽  
...  

Understanding the mechanism for heat tolerance is important for the hot pepper breeding program to develop heat-tolerant cultivars in changing climate. This study was conducted to investigate physiological and biochemical parameters related to heat tolerance and to determine leaf heat damage levels critical for selecting heat-tolerant genotypes. Seedlings of two commercial cultivars, heat-tolerant ‘NW Bigarim’ (NB) and susceptible ‘Chyung Yang’ (CY), were grown in 42 °C for ten days. Photosynthesis, electrolyte conductivity, proline content were measured among seedlings during heat treatment. Photosynthetic rate was significantly reduced in ‘CY’ but not in ‘NB’ seedlings in 42 °C. Stomatal conductivity and transpiration rate was significantly higher in ‘NB’ than ‘CY’. Proline content was also significantly higher in ‘NB’. After heat treatment, leaf heat damages were determined as 0, 25, 50 and 75% and plants with different leaf heat damages were moved to a glasshouse (30–32/22–24 °C in day/night). The growth and developmental parameters were investigated until 70 days. ‘NB’ was significantly affected by leaf heat damages only in fruit yield while ‘CY’ was in fruit set, number and yield. ‘NB’ showed fast recovery after heat stress compared to ‘CY’. These results suggest that constant photosynthetic rate via increased transpiration rate as well as high proline content in heat stress condition confer faster recovery from heat damage of heat-tolerant cultivars in seedlings stages.


Author(s):  
Sherzod Nigmatullayevich Rajametov ◽  
Eun Young Yang ◽  
Hyo Bong Jeong ◽  
Myeong Cheoul Cho ◽  
Soo-Young Chae ◽  
...  

High temperature seriously effects on plant vegetative and reproductive development and reduces productivity of plants, while to increase crop yield is the main target in most crop heat stress tolerance improvement breeding programs, not just survival, under high temperature. Our aim was to compare temperature stress tolerance in two commercial tomato cultivars “Dafnis” (big fruit size) and “Minichal” (cherry fruit size) to develop early screening methods and find out survival rate and physiological responses of tomato cultivars on high temperature (40°C and within 70% RH, day/night) in 4-5 true leaf seedling stage- (4LS) and identifies the linkage of heat tolerance with fruit set and leaf heat damage rates (LHD) in seedling stage with subsequent vegetative traits at recovery. Results showed that heat stress significantly affected on physiological-chemical and vegetative parameters of seedlings regardless of tomato cultivars. Survival and the threshold level of high temperature tolerance in the seedlings of cv. “Dafnis” and “Minichal” were identified on days 7 and 9, respectively. Our findings revealed that photosynthesis (PN, Gs, Ci, Tr) parameters were increased and CHL content persisted steady value in cv. “Minichal” during heat stress period, however EC and RPL rates were lower than cv. “Dafnis”. Heat stress reduced the SFW in both cultivars in seedling stage, but PH and RFW were significantly decreased in the heat tolerant cv. “Minichal”, whereas this parameters were not significantly ranged in the heat susceptible cv. “Dafnis”. Additionally, there no found linkage between vegetative parameters with decreasing of PN and CHL rates during HT of seedlings. In plants of cv. “Minichal” with LHD-25, 50 and 75% were no found significant differences in PH, whereas in cv. “Dafnis” significant differences were determined in plants with LHD-75%, and the significant differences in rates of SFW and RFW were observed in plants of cv. “Dafnis” having LHD-75% for 28 days of recovery at NT condition. Taken together, we concluded that heat stress affected on physiological parameters regardless of tolerance level, and to identify heat tolerant genotype in tomato breeding program, screening and selection genotypes have to be evaluated at the vegetative and reproductive stages with consideration fruit size types. Since we could not find linkage between heat tolerances in seedling stage with fruit set at the reproductive stage and fruit set cannot be used as a general predictor of heat tolerance.


2020 ◽  
Vol 47 (5) ◽  
pp. 440 ◽  
Author(s):  
Syed Adeel Zafar ◽  
Amjad Hameed ◽  
Muhammad Ashraf ◽  
Abdus Salam Khan ◽  
Zia-ul- Qamar ◽  
...  

Climatic variations have increased the occurrence of heat stress during critical growth stages, which negatively affects grain yield in rice. Plants adapt to harsh environments, and particularly high-temperature stress, by regulating their physiological and biochemical processes, which are key tolerance mechanisms. The identification of heat-tolerant rice genotypes and reliable selection indices are crucial for rice improvement programs. Here, we evaluated the response of a rice mutant population for high-temperature stress at the seedling and reproductive stages based on agronomic, physiological and molecular indices. Estimates of variance components revealed significant differences (P < 0.001) among genotypes, treatments and their interactions for almost all traits. The principal component analysis showed significant diversity among genotypes and traits under high-temperature stress. The mutant HTT-121 was identified as the most heat-tolerant mutant with higher grain yield, panicle fertility, cell membrane thermo-stability (CMTS) and antioxidant enzyme levels under heat stress. Various seedling-based morpho-physiological traits (leaf fresh weight, relative water contents, malondialdehyde, CMTS) and biochemical traits (superoxide dismutase, catalase and hydrogen peroxide) explained variations in grain yield that could be used as selection indices for heat tolerance in rice during early growth. Notably, heat-sensitive mutants accumulated reactive oxygen species, reduced catalase activity and upregulated OsSRFP1 expression under heat stress, suggesting their key roles in regulating heat tolerance in rice. The heat-tolerant mutants identified in this study could be used in breeding programs and to develop mapping populations to unravel the underlying genetic architecture for heat-stress adaptability.


Agronomy ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 597 ◽  
Author(s):  
Misganaw Wassie ◽  
Weihong Zhang ◽  
Qiang Zhang ◽  
Kang Ji ◽  
Liang Chen

Alfalfa (Medicago sativa L.) is a valuable forage legume, but its production is largely affected by high temperature. In this study, we investigated the effect of heat stress on 15 alfalfa cultivars to identify heat-tolerant and -sensitive cultivars. Seedlings were exposed to 38/35 °C day/night temperature for 7 days and various parameters were measured. Heat stress significantly reduced the biomass, relative water content (RWC), chlorophyll content, and increased the electrolyte leakage (EL) and malondialdehyde (MDA) content of heat-sensitive alfalfa cultivars. However, heat-tolerant cultivars showed higher soluble sugar (SS) and soluble protein (SP) content. The heat tolerance of each cultivar was comprehensively evaluated based on membership function value. Cultivars with higher mean membership function value of 0.86 (Bara310SC) and 0.80 (Magna995) were heat tolerant, and Gibraltar and WL712 with lower membership function value (0.24) were heat sensitive. The heat tolerance of the above four cultivars were further evaluated by chlorophyll a fluorescence analysis. Heat stress significantly affected the photosynthetic activity of heat-sensitive cultivars. The overall results indicate that Bara310SC and WL712 are heat-tolerant and heat-sensitive cultivars, respectively. This study provides basic information for understanding the effect of heat stress on growth and productivity of alfalfa.


2015 ◽  
Vol 140 (2) ◽  
pp. 144-150 ◽  
Author(s):  
Magaji G. Usman ◽  
Mohd Y. Rafii ◽  
Mohd Razi Ismail ◽  
Mohammad Abdul Malek ◽  
Mohammad Abdul Latif

Experiments were carried out to study the mechanisms for heat tolerance in chili pepper (Capsicum annuum). To assess these mechanisms, six genotypes were evaluated for cellular membrane thermostability (CMT) and for HSP70 gene expression. The plants were grown in an experimental plant growth chamber. The mean value of CMT indicates that membrane integrity was not damaged by the high temperature treatment (50 °C) in most of the genotypes. The genotypes were classified as follows: heat-tolerant (greater than 60%), moderately tolerant (30% to 60%), and susceptible (less than 30%). The heat-tolerant plants recorded the highest CMTs at 89.27%, 88.03%, and 85.10% for AVPP0702, AVPP0116, and AVPP9905, respectively, which might be the reason for the change in their cell membrane thermostability. AVPP9703 and AVPP0002 showed CMTs of 15.87% and 18.43%, which might indicate their sensitivity to heat stress. Heat shock protein 70 kDa was identified and found to be differentially expressed under the heat stress. Under heat stress, significantly increased levels of the HSP70 gene were detected after 2 h of temperature treatment at 42 °C, which indicated that this gene is quickly and sharply induced by heat shock. This was true for all genotypes tested, which were significantly up-regulated by more than 36.9-, 7.10-, 3.87-, and 3-fold for AVPP0702, AVPP0116, AVPP0002, and AVPP9703, respectively. The HSP70 gene was found to be significantly down-regulated under heat stress in ‘Kulai’. AVPP0702, AVPP9905, and AVPP0116 could be considered as heat-tolerant genotypes, whereas ‘Kulai’ and AVPP9703 were found to be heat-sensitive genotypes in this investigation.


2005 ◽  
Vol 130 (5) ◽  
pp. 700-706 ◽  
Author(s):  
Katy M. Rainey ◽  
Phillip D. Griffiths

The genetic basis for heat tolerance during reproductive development in snap bean was investigated in a heat-tolerant × heat-sensitive common bean cross. Parental, F1, F2, and backcross generations of a cross between the heat-tolerant snap bean breeding line `Cornell 503' and the heat-sensitive wax bean cultivar Majestic were grown in a high-temperature controlled environment (32 °C day/28 °C night), initiated prior to anthesis and continued through plant senescence. During flowering, individual plants of all generations were visually rated and scored for extent of abscission of reproductive organs. The distribution of abscission scores in segregating generations (F2 and backcrosses) indicated that a high rate of abscission in response to heat stress was controlled by a single recessive gene from `Majestic'. Abscission of reproductive organs is the primary determinant of yield under heat stress in many annual grain legumes; this is the first known report of single gene control of this reaction in common bean or similar legumes. Generation means analysis indicated that genetic variation among generations for pod number under heat stress was best explained by a six-parameter model that includes nonallelic interaction terms, perhaps the result of the hypothetical abscission gene interacting with other genes for pod number in the populations. A simple additive/dominance model accounted for genetic variance for seeds per pod. Dominance [h] and epistatic dominance × dominance [l] genetic parameters for yield components under high temperatures were the largest in magnitude. Results suggest `Cornell 503' can improve heat tolerance in sensitive cultivars, and heat tolerance in common bean may be influenced by major genes.


HortScience ◽  
2020 ◽  
Vol 55 (9) ◽  
pp. 1446-1452 ◽  
Author(s):  
Aneela Nijabat ◽  
Adam Bolton ◽  
Muhammad Mahmood-ur-Rehman ◽  
Adeel Ijaz Shah ◽  
Rameez Hussain ◽  
...  

Heat waves occur with more regularity and they adversely affect the yield of cool season crops including carrot (Daucus carota L.). Heat stress influences various biochemical and physiological processes including cell membrane permeability. Ion leakage and increase in cell permeability are indicators of cell membrane stability and have been used to evaluate the stress tolerance response in numerous crops and inform plant breeders for improving heat tolerance. No study has been published about the effects of heat stress on cell membrane stability and relative cell injury of carrot. Therefore, the present study was designed to estimate these stress indicators in response to heat stress at the early and late seedling developmental stages of 215 diverse accessions of wild and cultivated carrot germplasm. The article identifies the relationship between early and late stages of seedling tolerance across carrot genotypes and identifies heat-tolerant genotypes for further genetic analysis. Significant genetic variation among these stress indicators was identified with cell membrane stability and relative cell injury ranging from 6.3% to 97.3% and 2.8% to 76.6% at the early seedling stage, respectively; whereas cell membrane stability and relative cell injury ranged from 2.0% to 94.0% and 2.5% to 78.5%, respectively, at the late seedling stage under heat stress. Broad-sense heritability ranged from 0.64 to 0.91 for traits of interest under study, which indicates a relatively strong contribution of genetic factors in phenotypic variation among accessions. Heat tolerance varied widely among both wild and cultivated accessions, but the incidence of tolerance was higher in cultivated carrots than in wild carrots. The cultivated carrot accessions PI 326009 (Uzbekistan), PI 451754 (Netherlands), L2450 (USA), and PI 502654 (Pakistan) were identified as the most heat-tolerant accessions with highest cell membrane stability. This is the first evaluation of cell membrane stability and relative cell injury in response to heat stress during carrot development.


2001 ◽  
Vol 126 (5) ◽  
pp. 571-574 ◽  
Author(s):  
Katsumi Suzuki ◽  
Tadashi Tsukaguchi ◽  
Hiroyuki Takeda ◽  
Yoshinobu Egawa

Pod yield of `Kentucky Wonder' green bean (Phaseolus vulgaris L.) decreased at high temperatures due to a reduction of pod set. A highly positive correlation was observed between pod set and pollen stainability in flowers that were affected by heat stress about 10 days before anthesis. Pollen stainability was decreased by heat stress applied 8 to 11 days before flowering under controlled environment conditions. When mean air temperature during this period exceeded 28 °C, pollen stainability decreased under field conditions. Low pollen stainability indicated sensitivity to high temperatures about 10 days before flowering. A heat-tolerant cultivar showed higher pollen stainability than did heat-sensitive cultivars under high temperatures. These results demonstrated that heat tolerance at an early reproductive stage could be evaluated by analyzing pollen stainability using flowers developed under high temperatures.


2021 ◽  
Vol 12 ◽  
Author(s):  
Pooja Sihag ◽  
Vijeta Sagwal ◽  
Anuj Kumar ◽  
Priyanka Balyan ◽  
Reyazul Rouf Mir ◽  
...  

A large proportion of the Asian population fulfills their energy requirements from wheat (Triticum aestivum L.). Wheat quality and yield are critically affected by the terminal heat stress across the globe. It affects approximately 40% of the wheat-cultivating regions of the world. Therefore, there is a critical need to develop improved terminal heat-tolerant wheat varieties. Marker-assisted breeding with genic simple sequence repeats (SSR) markers have been used for developing terminal heat-tolerant wheat varieties; however, only few studies involved the use of microRNA (miRNA)-based SSR markers (miRNA-SSRs) in wheat, which were found as key players in various abiotic stresses. In the present study, we identified 104 heat-stress-responsive miRNAs reported in various crops. Out of these, 70 miRNA-SSR markers have been validated on a set of 20 terminal heat-tolerant and heat-susceptible wheat genotypes. Among these, only 19 miRNA-SSR markers were found to be polymorphic, which were further used to study the genetic diversity and population structure. The polymorphic miRNA-SSRs amplified 61 SSR loci with an average of 2.9 alleles per locus. The polymorphic information content (PIC) value of polymorphic miRNA-SSRs ranged from 0.10 to 0.87 with a mean value of 0.48. The dendrogram constructed using unweighted neighbor-joining method and population structure analysis clustered these 20 wheat genotypes into 3 clusters. The target genes of these miRNAs are involved either directly or indirectly in providing tolerance to heat stress. Furthermore, two polymorphic markers miR159c and miR165b were declared as very promising diagnostic markers, since these markers showed specific alleles and discriminated terminal heat-tolerant genotypes from the susceptible genotypes. Thus, these identified miRNA-SSR markers will prove useful in the characterization of wheat germplasm through the study of genetic diversity and population structural analysis and in wheat molecular breeding programs aimed at terminal heat tolerance of wheat varieties.


Sign in / Sign up

Export Citation Format

Share Document