scholarly journals Perfect Trees: Designing Energy-Optimal Symmetric Encryption Primitives

Author(s):  
Andrea Caforio ◽  
Subhadeep Banik ◽  
Yosuke Todo ◽  
Willi Meier ◽  
Takanori Isobe ◽  
...  

Energy efficiency is critical in battery-driven devices, and designing energyoptimal symmetric-key ciphers is one of the goals for the use of ciphers in such environments. In the paper by Banik et al. (IACR ToSC 2018), stream ciphers were identified as ideal candidates for low-energy solutions. One of the main conclusions of this paper was that Trivium, when implemented in an unrolled fashion, was by far the most energy-efficient way of encrypting larger quantity of data. In fact, it was shown that as soon as the number of databits to be encrypted exceeded 320 bits, Trivium consumed the least amount of energy on STM 90 nm ASIC circuits and outperformed the Midori family of block ciphers even in the least energy hungry ECB mode (Midori was designed specifically for energy efficiency).In this work, we devise the first heuristic energy model in the realm of stream ciphers that links the underlying algebraic topology of the state update function to the consumptive behaviour. The model is then used to derive a metric that exhibits a heavy negative correlation with the energy consumption of a broad range of stream cipher architectures, i.e., the families of Trivium-like, Grain-like and Subterranean-like constructions. We demonstrate that this correlation is especially pronounced for Trivium-like ciphers which leads us to establish a link between the energy consumption and the security guarantees that makes it possible to find several alternative energy-optimal versions of Trivium that meet the requirements but consume less energy. We present two such designs Trivium-LE(F) and Trivium-LE(S) that consume around 15% and 25% less energy respectively making them the to date most energy-efficient encryption primitives. They inherit the same security level as Trivium, i.e., 80-bit security. We further present Triad-LE as an energy-efficient variant satisfying a higher security level. The simplicity and wide applicability of our model has direct consequences for the conception of future hardware-targeted stream ciphers as for the first time it is possible to optimize for energy during the design phase. Moreover, we extend the reach of our model beyond plain encryption primitives and propose a novel energy-efficient message authentication code Trivium-LE-MAC.

Author(s):  
Xingzheng Chen ◽  
Congbo Li ◽  
Ying Tang ◽  
Li Li ◽  
Hongcheng Li

AbstractMechanical manufacturing industry consumes substantial energy with low energy efficiency. Increasing pressures from energy price and environmental directive force mechanical manufacturing industries to implement energy efficient technologies for reducing energy consumption and improving energy efficiency of their machining processes. In a practical machining process, cutting parameters are vital variables set by manufacturers in accordance with machining requirements of workpiece and machining condition. Proper selection of cutting parameters with energy consideration can effectively reduce energy consumption and improve energy efficiency of the machining process. Over the past 10 years, many researchers have been engaged in energy efficient cutting parameter optimization, and a large amount of literature have been published. This paper conducts a comprehensive literature review of current studies on energy efficient cutting parameter optimization to fully understand the recent advances in this research area. The energy consumption characteristics of machining process are analyzed by decomposing total energy consumption into electrical energy consumption of machine tool and embodied energy of cutting tool and cutting fluid. Current studies on energy efficient cutting parameter optimization by using experimental design method and energy models are reviewed in a comprehensive manner. Combined with the current status, future research directions of energy efficient cutting parameter optimization are presented.


Author(s):  
Viacheslav Martynov

To calculate the optimal parameters of outbuildings, a mathematical model and method for optimizing the shape and resistance of heat transfer for opaque and transparent structures with a certain constant number of faces, building volume and amount of insulation to minimize the thermal balance of enclosing structures with the environment during the heating period In the course of calculations the geometrical parameters of translucent, opaque structures in the heat-insulating shell of buildings are determined taking into account heat losses, heat influx from solar radiation by the criterion of ensuring minimum heat losses through enclosing structures, rational parameters (buildings) The given technique and mathematical models should be used in the future in the design of energy efficient buildings in the reconstruction and thermal modernization of buildings. This will increase their energy efficiency and, accordingly, the energy efficiency class of buildings. For the research faceted attached building in the form of a triangular pyramid, the reduction in heat loss was 14.82 percent only due to the optimization of the shape and redistribution of the insulation. Similar results were obtained for other initial forms. For the first time, a computerized method was proposed, an algorithm and application package Optimparam for multiparameter shape optimization and insulation of translucent and opaque structures for outbuildings with a given number of arbitrarily arranged faces were developed.


2021 ◽  
Vol 58 (02) ◽  
pp. 192-203
Author(s):  
Padam Singh ◽  
T. P. Singh ◽  
Rajat Kumar Sharma ◽  
Yogesh Kumar Negi ◽  
Ramesh Pal

Pine needle is a typical biomass which is abundantly available in Uttarakhand hills. This shredded biomass contributes significantly in forest fire occurring regularly in Uttarakhand. Different energy harnessing routes as direct combustion, anaerobic digestion, pyrolysis, gasification, and briquetting for pine needle were reviewed. These routes were further compared on the basis of energy consumption and energy efficiency of the processes as per the available literature. The review suggested that briquetting of pine needle and its anaerobic digestion are two most energy efficient methods having energy efficiency of 88% and 41.6%, respectively. The estimated energy required for briquetting of 1 ton pine needle was 1370.5 MJ, whereas for gasification it was 1170 MJ


2021 ◽  
Vol 11 (4) ◽  
pp. 42-58
Author(s):  
Semab Iqbal ◽  
Israr Hussain ◽  
Zubair Sharif ◽  
Kamran Hassan Qureshi ◽  
Javeria Jabeen

Despite the fact that the ocean plays a role in everything from the air we breathe to daily weather and climate patterns, we know very little about our ocean. Underwater wireless sensor network (UWSN) is one of the options helping us to discover some domains such as natural assets and underwater resource exploration. However, the acoustic signal is the only suitable option in underwater communication in the absence of radio waves, which face a number of challenges under this environment. To overcome these issues, many routing schemes are introduced by researchers though energy consumption is still a challenge in underwater communication. To overcome the issue of rapid energy consumption, a reliable and energy-efficient routing method is introduced that avoids the redundant forwarding of data; hence, it achieves energy efficiency and eventually prolongs the network lifetime. Simulation results support the claim that the proposed scheme achieves energy efficiency along higher delivery ratio by reducing the data transmission error rate during the routing decisions.


Author(s):  
Vijendra Babu D. ◽  
K. Nagi Reddy ◽  
K. Butchi Raju ◽  
A. Ratna Raju

A modern wireless sensor and its development majorly depend on distributed condition maintenance protocol. The medium access and its computing have been handled by multi hope sensor mechanism. In this investigation, WSN networks maintenance is balanced through condition-based access (CBA) protocol. The CBA is most useful for real-time 4G and 5G communication to handle internet assistance devices. The following CBA mechanism is energy efficient to increase the battery lifetime. Due to sleep mode and backup mode mechanism, this protocol maintains its energy efficiency as well as network throughput. Finally, 76% of the energy consumption and 42.8% of the speed of operation have been attained using CBI WSN protocol.


2020 ◽  
Vol 12 (21) ◽  
pp. 8867
Author(s):  
Ayoub Zeraibi ◽  
Daniel Balsalobre-Lorente ◽  
Khurram Shehzad

This study aims to explore the connection between the potential effects of energy consumption and technological innovation on economic growth in China from 1980 to 2018. The Non-Linear Autoregressive Distributive Lag (NARDL) econometric approach reveals an asymmetric connection between technological innovation, energy consumption, and economic growth in China from 1980 to 2018. The empirical results also reveal that a 1% decrease in energy consumption would imperatively decline economic growth by 12.5%. Moreover, a 1% upsurge in trademark applications improves economic growth by 8.2%. For the case of China, this study reveals that a large portion of the energy was used by families, which is regarded as a non-contributing element to the economy of China. This study suggests that the promotion and production of energy-efficient processes and products is necessary in order to make a more significant step toward sustainable development. The empirical findings also suggest that the Chinese government should regulate suitable policies aimed at promoting energy efficiency and the control of inefficient energy uses.


2014 ◽  
Vol 666 ◽  
pp. 322-326
Author(s):  
Yu Yang Peng ◽  
Jae Ho Choi

Energy efficiency is one of the important hot issues in wireless sensor networks. In this paper, a multi-hop scheme based on a cooperative multi-input multi-outputspatial modulation technique is proposed in order to improve energy efficiency in WSN. In this scheme, the sensor nodes are grouped into clusters in order to achieve a multi-input multi-output system; and a simple forwarding transmission scenario is considered so that the intermediate clusters only forward packets originated from the source cluster down to the sink cluster. In order to verify the performance of the proposed system, the bit energy consumption formula is derived and the optimal number of hopsis determined. By qualitative experiments, the obtained results show that the proposed scheme can deliver the data over multiple hops consuming optimal energy consumption per bit.


VLSI Design ◽  
2001 ◽  
Vol 12 (3) ◽  
pp. 349-363
Author(s):  
V. A. Bartlett ◽  
E. Grass

Strategies for the design of ultra low power multipliers and multiplier-accumulators are reported. These are optimized for asynchronous applications being able to take advantage of data-dependent computation times. Nevertheless, the low power consumption can be obtained in both synchronous and asynchronous environments. Central to the energy efficiency is a dynamic-logic technique termed Conditional Evaluation which is able to exploit redundancies within the carry-save array and deliver energy consumption which is also heavily data-dependent.Energy efficient adaptations for handling two's complement operands are introduced. Area overheads of the proposed designs are estimated and transistor level simulation results of signed and unsigned multipliers as well as a signed multiplier-accumulator are given.Normalized comparisons with other designs show our approach to use less energy than other published multipliers.


2021 ◽  
Vol 246 ◽  
pp. 08005
Author(s):  
A.S. Strongin ◽  
A.M. Zhivov

In geographical areas with cold climates, large, massively constructed industrial and warehouse buildings and logistics complexes are large consumers of energy resources. The great height and large contained volumes of the premises, the presence of a significant number of doors, and building configurations that include many transport corridors all require the use of air-thermal curtains to increase the energy efficiency of the buildings’ heating, ventilating, and air-conditioning (HVAC) systems, which commonly produce several thousand kilowatts of thermal power. Optimization of air curtains can improve the microclimates of the premises, achieve savings in the initial construction costs, and also reduce energy consumption during operation by 10–20%.


in WSN, clustering gives an effective way to enhance the network lifetime. Moreover It has been observed that the clustering algorithm utilizes the two main technique first is selection of cluster head and cycling it periodically in order to distribute the energy among the clusters and this in terms increases the lifetime of network. Another challenge comes with this is minimize the energy consumption. In past several algorithm has been proposed to increase the lifetime of the network and energy consumption, however these methodologies lacks from efficiency. In this paper, we have proposed a methodologies named as EE-CI (Energy Efficient Clustering using Interconnection), along with the random updation. Here the networks are parted into different clusters, the cluster updation are done based on the CHC scheme. Moreover, in proposed methodology cluster updation and data sample is determined through the change in sensor data. Here we propose a method for sampling sensor and CHC for selecting the cluster head to balance the energy and improvise the energy efficiency. Moreover, the proposed methodology is evaluated and the result is demonstrated by considering the Leach as existing methodology, experiments results shows that the proposed methodology outperforms the existing methodology.


Sign in / Sign up

Export Citation Format

Share Document