scholarly journals Optimized Sorption of Methyl Orange using Functionalized Carob Plant Pod

2020 ◽  
Vol 45 (6) ◽  
Author(s):  
K. A. ABDULSALAM ◽  
B. H. Amodu ◽  
O. K. Fakorede ◽  
J. M. Adelowo ◽  
A. P. Onifade ◽  
...  

One of the most problematic groups of water pollutants is dye, a main constituent of textile industrial wastewater, which is carcinogenic. Therefore, this research delved into adsorption of dyes from textiles and wastewater using acid-treated as an adsorbent. The adsorbent was prepared by functionalizing the pod of carob with concentrated H3PO4. The effects of operational parameters such as adsorbent dosage, contact time, initial concentration of dye and temperature were studied and optimized using central composite design of design of experiment (DOE). The effects of process parameters (contact time, concentration, adsorbent dosage and temperature) on the dye adsorption were determined and optimized. It was observed that the colour removal efficiency increased with an increase in adsorbent mass and contact time. The adsorption process is endothermic as the percentage removal increases with temperature. The optimum contact time, concentration, adsorbent dosage and temperature were found to be 60oC, 9.74hr, 10ppm, and 5g respectively for the maximum decolorization.

Processes ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 556
Author(s):  
Mustafa I. Khamis ◽  
Taleb H. Ibrahim ◽  
Fawwaz H. Jumean ◽  
Ziad A. Sara ◽  
Baraa A. Atallah

Alizarin red S (ARS) removal from wastewater using sheep wool as adsorbent was investigated. The influence of contact time, pH, adsorbent dosage, initial ARS concentration and temperature was studied. Optimum values were: pH = 2.0, contact time = 90 min, adsorbent dosage = 8.0 g/L. Removal of ARS under these conditions was 93.2%. Adsorption data at 25.0 °C and 90 min contact time were fitted to the Freundlich and Langmuir isotherms. R2 values were 0.9943 and 0.9662, respectively. Raising the temperature to 50.0 °C had no effect on ARS removal. Free wool and wool loaded with ARS were characterized by Fourier Transform Infrared Spectroscopy (FTIR). ARS loaded wool was used as adsorbent for removal of Cr(VI) from industrial wastewater. ARS adsorbed on wool underwent oxidation, accompanied by a simultaneous reduction of Cr(VI) to Cr(III). The results hold promise for wool as adsorbent of organic pollutants from wastewater, in addition to substantial self-regeneration through reduction of toxic Cr(VI) to Cr(III). Sequential batch reactor studies involving three cycles showed no significant decline in removal efficiencies of both chromium and ARS.


2019 ◽  
Vol 233 (2) ◽  
pp. 201-223 ◽  
Author(s):  
Khalida Naseem ◽  
Rahila Huma ◽  
Aiman Shahbaz ◽  
Jawaria Jamal ◽  
Muhammad Zia Ur Rehman ◽  
...  

Abstract This study describes the adsorption of Cu (II), Co (II) and Ni (II) ions from wastewater on Vigna radiata husk biomass. The ability of adsorbent to capture the metal ions has been found to be in the order of Ni (II)>Co (II) and Cu (II) depending upon the size and nature of metal ions to be adsorbed. It has been observed that percentage removal of Cu (II), Co (II) and Ni (II) ions increases with increase of adsorbent dosage, contact time and pH of the medium but up to a certain extent. Maximum adsorption capacity (qmax) for Cu (II), Co (II) and Ni (II) ions has been found to be 11.05, 15.04 and 19.88 mg/g, respectively, under optimum conditions of adsorbent dosage, contact time and pH of the medium. Langmuir model best fits the adsorption process with R2 value approaches to unity for all metal ions as compared to other models because adsorption sites are seemed to be equivalent and only monolayer adsorption may occur as a result of binding of metal ion with a functional moiety of adsorbent. Pseudo second order kinetic model best interprets the adsorption process of Cu (II), Co (II) and Ni (II) ions. Thermodynamic parameters such as negative value of Gibbs energy (∆G°) gives information about feasibility and spontaneity of the process. Adsorption process was found to be endothermic for Cu (II) ions while exothermic for Co (II) and Ni (II) ions as signified by the value of enthalpy change (∆H°). Husk biomass was recycled three times for removal of Ni (II) from aqueous medium to investigate its recoverability and reusability. Moreover V. radiata husk biomass has a potential to extract Cu (II) and Ni (II) from electroplating wastewater to overcome the industrial waste water pollution.


2019 ◽  
Vol 107 (5) ◽  
pp. 377-386 ◽  
Author(s):  
Cansu Endes Yılmaz ◽  
Mahmoud A.A. Aslani ◽  
Ceren Kütahyalı Aslani

Abstract Adsorption of thorium onto nitric acid modified multi-walled carbon nanotubes was investigated by central composite design as a function of contact time, pH, initial thorium concentration and temperature. The results showed that optimum uptake capacity was 65.75±2.23 mg·g−1 with respect to pH=4, initial thorium concentration of 100 mg·L−1, 25 °C and 15 min contact time. Thermodynamic parameters [standard enthalpy (ΔH0), entropy (ΔS0), and free energy (ΔG0)] were calculated, and the results indicated that adsorption was endothermic. Langmuir, Freundlich and Dubinin-Radushkevich isotherms have been investigated in order to characterize the adsorption process in the range of 25–100 mg·L−1 initial thorium concentration. The Freundlich isotherm is the best suited as a model because it has the highest correlation coefficient (R2=0.9485). The pseudo-second order kinetics well defined the adsorption process.


2015 ◽  
Vol 798 ◽  
pp. 390-394
Author(s):  
Saptono Hadi ◽  
Budi Hastuti ◽  
Nurina Tulus Setiawati

Research on the application of chitosan derived from oyster (Anadara inflata) shell as adsorbent for heavy metal Cu (II) has been conducted. Optimum conditions for adsorption, including pH, reaction time, and mass of adsorbent were investigated. Adsorption capability of Cu (II) by chitosan under those optimum conditions was subsequently evaluated by determining their adsorption isotherms and interaction mechanism. The results showed that the optimum condition for adsorption were pH 8, contact time 60 min, and mass of adsorbent 300 mg. Under those optimum conditions, chitosan has a high percentage removal of Cu (II) from aqueous solution, up to 70%. The adsorption process was well described as Langmuir isotherm and it is assumed that the interaction between Cu (II) and chitosan was based on chemical mechanism.


2013 ◽  
Vol 330 ◽  
pp. 112-116 ◽  
Author(s):  
Nabilah A. Lutpi ◽  
N. Najihah Jamil ◽  
C.K. Kairulazam C.K. Abdullah ◽  
Yee Shian Wong ◽  
Soon An Ong ◽  
...  

The adsorption of Methylene Blue (MB) and Acid Orange 7 (AO7) dye onto Ananas Comosus Mixed Peels and Leaves (ACMPL) were carried out by conducting four different parameters such as initial concentration, pH, dosage of adsorbent, and contact time. Effect of initial concentration for both dyes showed that higher initial concentration would take longer contact time to attain equilibrium due to higher amount of adsorbate molecules. The effect of pH showed highest percentage removal for MB is at pH 9 which is 95.81%. Meanwhile for AO7 the highest percentage removal is 31.06% at pH 3. The percentage removal of MB had reached the equilibrium at dosage 0.5g while AO7 keep increasing with the increment of adsorbent dosage. The percentage removal of MB and AO7 had increased until hour 2.5 which was from 72.5% to 86.93% and 19.441% to 36.89% respectively and reached equilibrium at 3 hour contact time.


2021 ◽  
Vol 9 (2) ◽  
pp. 470-479

The removal percentage of color from institutional wastewater was studied using an electrocoagulation process with different electrode combination at the anode and cathode. This was done by considering operational parameters such as pH at (3, 6 and 9), current at (0.03A, 0.06A and 0.09A) and reaction time at (20, 40 and 60 minutes). When electrode combined in the form of Al-Al (anode-Cathode/Cathode-Anode) and Fe-Fe (anode-Cathode/Cathode-Anode) the percentage removal of color was up to 95.50% and 97.24% respectively. On the other hand around 98.03% and 91.95% of color was removed when Al-Fe (Anode-Cathode) and Fe-Al (Anode-Cathode) combined at pH 9 and 60 minutes of reaction time respectively. Central composite design from response surface methodology was used up to analysis the statistical and mathematical data based on experimental results such as the model was significant for all electrode combinations. Similarly a quadratic model was used for further study of operational effects on the removal (%) of color from institutional wastewater. The value of coefficient of the determination (R2) also indicated the model was a good fit as well as optimization was done by Response Surface Methodology.


2020 ◽  
Vol 12 (1) ◽  
pp. 167-177
Author(s):  
Ayuba Abdullahi Muhammad ◽  
Nyijime Thomas Aondofa

Carbonized Bambara GroundNut Shell (CBGNS) was used as adsorbent for the adsorption of paraquat dichloride (PQ) from aqueous solution. The prepared adsorbent was characterized using scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy methods. Several parameters that might affect the adsorption process including pH, contact time, adsorbent dosage, temperature and initial concentration were investigated and optimized using batch adsorption technique. Results of the study revealed that maximum removal efficiency (98%) was achieved using 0.05g adsorbent dosage, solution pH of 5 and 60 min of contact time. The equilibrium experimental result revealed that Langmuir model best described the adsorption process with R2 value of 0.956.The heat of adsorption process was estimated from Temkin Isotherm model to be 19.99J/mol and the mean free energy was estimated from Duninin-Radushkevich (DRK) isotherm model to be 0.289KJ/mol indicating chemisorptions process. The kinetic and thermodynamic studies revealed that the adsorption processes followed pseudo-second-order kinetics with R2 value of 0.999 and the value of ∆G (- 27.74 kJ mol-1), ∆H (13.145 kJ mol-1) indicate the spontaneous and endothermic nature of PQ adsorption on CBGNS. The results suggested that CBGNS had the potential to become a promising material for PQ contaminated water treatment. Keywords: Adsorption, Paraquat dichloride, Carbonized Bambara Ground nut shell, Water treatment.


Author(s):  
Neha bhadauria ◽  
Arjun Suresh

The present study analyzed the efficiency of a naturally derived fenugreek powder for removal of Congo red dye from the aqueous solution. The flocculation Studies on Congo Red (CR) a hazardous, textile dye onto Fenugreek Powder and its adsorption was analyzed. Fenugreek Powder is Eco-friendly, biodegradable and locally available in the market. The dye adsorption process was performed in different batches at varying pH, dye concentration, adsorbent concentration and contact time to get the best results. The result showed that the maximum removal of dye was 42.4% with 10mg/l of Fenugreek powder at pH 4.


2018 ◽  
Vol 18 (44) ◽  
pp. 5-11 ◽  
Author(s):  
Nizamettin Demirkıran ◽  
G D Turhan Özdemir ◽  
M Saraç ◽  
M Dardağan

In this study, the adsorption of methylene blue dye was examined by using pyrolusite ore as a low-cost alternative adsorbent source. Pyrolusite, which contains mainly MnO2, is a manganese ore. The effects of the initial concentration of dye, contact time, initial pH of solution, adsorbent dosage, stirring speed of solution, and average particle size of adsorbent on the adsorption of methylene blue were studied. It was found that the percentage of the adsorbed dye increased with increasing the amount of pyrolusite. While the initial dye concentration, initial pH, contact time, stirring speed, particle size, and adsorbent dosage were 25 ppm, 6, 90 min, 250 rpm, 63 µm, and 12 g/l, respectively, the efficiency of dye adsorption on pyrolusite ore was 99%. The isotherm and kinetic studies relating to this adsorption process were also made. It was found that the equilibrium data followed the Langmuir isotherm model while the kinetic of process could be described by the pseudo-second order kinetic model.


2021 ◽  
Author(s):  
Rachida Souidi ◽  
yasmina khane ◽  
Lahcen Belarbi ◽  
Smain Bousalem

Abstract In this work, the sawdust of vine wood (VW) was treated with sulfuric acid and used to adsorb methylene blue (MB) from aqueous solutions via a batch adsorption process. The characteristics of the adsorbent were determined by various analytical techniques such as Fourier-transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM) and Brunauer−Emmett−Teller (BET) N2 adsorption−desorption isotherms. The effects of various experimental parameters including sulfuric acid concentration, particle size of the adsorbent, pH of the solution, contact time, initial concentration, adsorbent dosage and temperature on adsorption of MB by activating sawdust were systematically investigated. The experimental results showed that the adsorption efficiency was increased with contact time and adsorbent dosage. The maximum removal efficiency was found after 180 min of solid/liquid contact with adsorbent doses of 1 g/l for sawdust. The isotherm and kinetic experimental data for MB adsorption on VW sawdust were best-fitted by Langmuir models and Pseudo-second-order, respectively. The calculated values of the entropy (ΔS°), enthalpy (ΔH°) and Gibbs energy (ΔG°) indicated that the adsorption process was exothermic in nature. These results suggest that the activated sawdust can be employed as a low-cost and environmentally friendly adsorbent for the treatment of wastewaters containing dyes.


Sign in / Sign up

Export Citation Format

Share Document