scholarly journals Influence of Pt, Ag and Au electrodes on Cr (III) electrofiltration with current density

2021 ◽  
Vol 2 (5) ◽  
pp. 6329-6346
Author(s):  
Croswel Eduardo Aguilar Quiroz ◽  
Rosa Elizabeth Nomberto Torres ◽  
Segundo Juan Diaz Camacho ◽  
Eymi Gianella Laiza Escobar

The metals Pt, Au and Ag as electrodes were studied at electrofiltration Cr3+ ion. The system of three half-cells were used. The Cr3+ migration from the central half-cell to the others half-cells where are electrodes was evaluated. Current density and the configurations of metals such as anode - cathode, is determined. The electrodes activity varies with current density as well as cathode or anode. The Cr3+ electromigration to cathodic half-cell increase when anode activity to generate H3O+ ions was higher than cathode (OH- ions). Instead, the migration of Cr3+ to the anode is by electroosmosis. The presence of Au as an electrode generates greater electromigration of the chromium ion to the cathode.

2015 ◽  
Vol 754-755 ◽  
pp. 342-347
Author(s):  
Mien Van Tran ◽  
Dong Viet Phuong Tran ◽  
Mohd Mustafa Al Bakri Abdullah

Electrochemical chloride extraction – ECE is an effective method to rehabilitate reinforced concrete structure, which has been corroded. This study investigated concentration of chloride remained in concrete and half-cell potential of the steel reinforcement after ECE using interrupting period of electricity current. Efficiency of ECE using Ca (OH)2was surveyed with two current density of 0.5 and 1A/m2. In this study, ECE treatment was proceeded intermittently in approximately 8 weeks. Results pointed out that chloride concentration decreased to 30 – 60% significantly, especially at in the vicinity of reinforcing steel. Simultaneously, half-cell potential of the steel reinforcement after 4 weeks halted treatment stabilizes in low-corrosion rate.


RSC Advances ◽  
2014 ◽  
Vol 4 (50) ◽  
pp. 26115-26121 ◽  
Author(s):  
Kai-Chieh Hsu ◽  
Chi-Young Lee ◽  
Hsin-Tien Chiu

Via a vapour–solid reaction growth pathway, phase-segregated SnO2 nanorods were developed in a matrix of CaCl2 salt by reacting CaO particles with a flowing mixture of SnCl4 and Ar gases at elevated temperatures. A half-cell constructed from the as-fabricated SnO2 electrode and a Li foil exhibited a reversible capacity of 435 mA h g−1 after one hundred cycles at a current density of 100 mA g−1.


2017 ◽  
Vol 58 (3) ◽  
Author(s):  
Bibiana Cercado ◽  
Ana Laura Vega-Guerrero ◽  
Francisco Rodríguez-Valadez ◽  
José Luis Hernández- López ◽  
Luis Felipe Cházaro-Ruiz ◽  
...  

<p>The effect of real dairy wastewater (DWW) additions on the current density generated by a bioanode was evaluated in a half cell configuration under potentiostatic control, thus simulating the anodic chamber of a Microbial Fuel Cell. Low substrate additions increased current density up to 1655 ± 136 mA m<sup>-2</sup>, forming a two-current peak pattern. Then the system was tested with a casein-lactose synthetic media. A high protein concentration reduced the current density; individual compounds led to the highest current (330.5 mA m<sup>-2</sup> with casein; 1276 mA m<sup>-2</sup> with lactose). Moreover, the protein reduced the current start up time.</p>


1979 ◽  
Vol 44 ◽  
pp. 307-313
Author(s):  
D.S. Spicer

A possible relationship between the hot prominence transition sheath, increased internal turbulent and/or helical motion prior to prominence eruption and the prominence eruption (“disparition brusque”) is discussed. The associated darkening of the filament or brightening of the prominence is interpreted as a change in the prominence’s internal pressure gradient which, if of the correct sign, can lead to short wavelength turbulent convection within the prominence. Associated with such a pressure gradient change may be the alteration of the current density gradient within the prominence. Such a change in the current density gradient may also be due to the relative motion of the neighbouring plages thereby increasing the magnetic shear within the prominence, i.e., steepening the current density gradient. Depending on the magnitude of the current density gradient, i.e., magnetic shear, disruption of the prominence can occur by either a long wavelength ideal MHD helical (“kink”) convective instability and/or a long wavelength resistive helical (“kink”) convective instability (tearing mode). The long wavelength ideal MHD helical instability will lead to helical rotation and thus unwinding due to diamagnetic effects and plasma ejections due to convection. The long wavelength resistive helical instability will lead to both unwinding and plasma ejections, but also to accelerated plasma flow, long wavelength magnetic field filamentation, accelerated particles and long wavelength heating internal to the prominence.


Author(s):  
P. Lu ◽  
W. Huang ◽  
C.S. Chern ◽  
Y.Q. Li ◽  
J. Zhao ◽  
...  

The YBa2Cu3O7-x thin films formed by metalorganic chemical vapor deposition(MOCVD) have been reported to have excellent superconducting properties including a sharp zero resistance transition temperature (Tc) of 89 K and a high critical current density of 2.3x106 A/cm2 or higher. The origin of the high critical current in the thin film compared to bulk materials is attributed to its structural properties such as orientation, grain boundaries and defects on the scale of the coherent length. In this report, we present microstructural aspects of the thin films deposited on the (100) LaAlO3 substrate, which process the highest critical current density.Details of the thin film growth process have been reported elsewhere. The thin films were examined in both planar and cross-section view by electron microscopy. TEM sample preparation was carried out using conventional grinding, dimpling and ion milling techniques. Special care was taken to avoid exposure of the thin films to water during the preparation processes.


Author(s):  
J. R. Michael ◽  
A. D. Romig ◽  
D. R. Frear

Al with additions of Cu is commonly used as the conductor metallizations for integrated circuits, the Cu being added since it improves resistance to electromigration failure. As linewidths decrease to submicrometer dimensions, the current density carried by the interconnect increases dramatically and the probability of electromigration failure increases. To increase the robustness of the interconnect lines to this failure mode, an understanding of the mechanism by which Cu improves resistance to electromigration is needed. A number of theories have been proposed to account for role of Cu on electromigration behavior and many of the theories are dependent of the elemental Cu distribution in the interconnect line. However, there is an incomplete understanding of the distribution of Cu within the Al interconnect as a function of thermal history. In order to understand the role of Cu in reducing electromigration failures better, it is important to characterize the Cu distribution within the microstructure of the Al-Cu metallization.


Author(s):  
P. J. Lee ◽  
D. C. Larbalestier

Several features of the metallurgy of superconducting composites of Nb-Ti in a Cu matrix are of interest. The cold drawing strains are generally of order 8-10, producing a very fine grain structure of diameter 30-50 nm. Heat treatments of as little as 3 hours at 300 C (∼ 0.27 TM) produce a thin (1-3 nm) Ti-rich grain boundary film, the precipitate later growing out at triple points to 50-100 nm dia. Further plastic deformation of these larger a-Ti precipitates by strains of 3-4 produces an elongated ribbon morphology (of order 3 x 50 nm in transverse section) and it is the thickness and separation of these precipitates which are believed to control the superconducting properties. The present paper describes initial attempts to put our understanding of the metallurgy of these heavily cold-worked composites on a quantitative basis. The composite studied was fabricated in our own laboratory, using six intermediate heat treatments. This process enabled very high critical current density (Jc) values to be obtained. Samples were cut from the composite at many processing stages and a report of the structure of a number of these samples is made here.


Author(s):  
I-Fei Tsu ◽  
D.L. Kaiser ◽  
S.E. Babcock

A current theme in the study of the critical current density behavior of YBa2Cu3O7-δ (YBCO) grain boundaries is that their electromagnetic properties are heterogeneous on various length scales ranging from 10s of microns to ˜ 1 Å. Recently, combined electromagnetic and TEM studies on four flux-grown bicrystals have demonstrated a direct correlation between the length scale of the boundaries’ saw-tooth facet configurations and the apparent length scale of the electrical heterogeneity. In that work, enhanced critical current densities are observed at applied fields where the facet period is commensurate with the spacing of the Abrikosov flux vortices which must be pinned if higher critical current density values are recorded. To understand the microstructural origin of the flux pinning, the grain boundary topography and grain boundary dislocation (GBD) network structure of [001] tilt YBCO bicrystals were studied by TEM and HRTEM.


Author(s):  
M. R. McCartney ◽  
J. K. Weiss ◽  
David J. Smith

It is well-known that electron-beam irradiation within the electron microscope can induce a variety of surface reactions. In the particular case of maximally-valent transition-metal oxides (TMO), which are susceptible to electron-stimulated desorption (ESD) of oxygen, it is apparent that the final reduced product depends, amongst other things, upon the ionicity of the original oxide, the energy and current density of the incident electrons, and the residual microscope vacuum. For example, when TMO are irradiated in a high-resolution electron microscope (HREM) at current densities of 5-50 A/cm2, epitaxial layers of the monoxide phase are found. In contrast, when these oxides are exposed to the extreme current density probe of an EM equipped with a field emission gun (FEG), the irradiated area has been reported to develop either holes or regions almost completely depleted of oxygen. ’ In this paper, we describe the responses of three TMO (WO3, V2O5 and TiO2) when irradiated by the focussed probe of a Philips 400ST FEG TEM, also equipped with a Gatan 666 Parallel Electron Energy Loss Spectrometer (P-EELS). The multi-channel analyzer of the spectrometer was modified to take advantage of the extremely rapid acquisition capabilities of the P-EELS to obtain time-resolved spectra of the oxides during the irradiation period. After irradiation, the specimens were immediately removed to a JEM-4000EX HREM for imaging of the damaged regions.


Author(s):  
P.E. Champness ◽  
R.W. Devenish

It has long been recognised that silicates can suffer extensive beam damage in electron-beam instruments. The predominant damage mechanism is radiolysis. For instance, damage in quartz, SiO2, results in loss of structural order without mass loss whereas feldspars (framework silicates containing Ca, Na, K) suffer loss of structural order with accompanying mass loss. In the latter case, the alkali ions, particularly Na, are found to migrate away from the area of the beam. The aim of the present study was to investigate the loss of various elements from the common silicate structures during electron irradiation at 100 kV over a range of current densities of 104 - 109 A m−2. (The current density is defined in terms of 50% of total current in the FWHM probe). The silicates so far ivestigated are:- olivine [(Mg, Fe)SiO4], a structure that has isolated Si-O tetrahedra, garnet [(Mg, Ca, Fe)3Al2Si3AO12 another silicate with isolated tetrahedra, pyroxene [-Ca(Mg, Fe)Si2O6 a single-chain silicate; mica [margarite, -Ca2Al4Si4Al4O2O(OH)4], a sheet silicate, and plagioclase feldspar [-NaCaAl3Si5O16]. Ion- thinned samples of each mineral were examined in a VG Microscopes UHV HB501 field- emission STEM. The beam current used was typically - 0.5 nA and the current density was varied by defocussing the electron probe. Energy-dispersive X-ray spectra were collected every 10 seconds for a total of 200 seconds using a Link Systems windowless detector. The thickness of the samples in the area of analysis was normally 50-150 nm.


Sign in / Sign up

Export Citation Format

Share Document