scholarly journals STARTING UP AND REGULATING THE ROTATIONAL SPEED OF A POWERFUL ELECTRIC DRIVE USING A MAGNETIC REDUCING GEAR

Author(s):  
Alexander A. Afanasyev

The article examines a magnetic reducing gear, the stator winding of which receives power in the mode of a valve machine. In the absence of this supply, the electric motor can be started-up in no-load mode. To significantly reduce the power of the magnetic reducing gear frequency converter compared to the power of the adjustable electric motor, it is necessary to make the number of the rotor's pairs of poles with permanent magnets of a magnetic reducing gear large enough. In this case, the design of arranging the magnets in radial grooves is the most adequate, ensuring the concentration of fluxes per pole in the air gaps. The stator winding of such a magnetic reducing gear will be low-pole. When manufacturing a magnetic reducing gear, it is possible to use a stator magnetic core of a serial asynchronous machine together with its regular winding. The electromagnetic moments of the magnetic gearbox rotors are a consequence of the presence of a stator electromagnetic moment. The stator's current frequency is represented by two components, of which the first is defined from the state equations and the second is a constant forming an additional channel of functional influence. The speed of rotation of the gear shafts can be adjusted by changing the specified constant and the input voltage of the frequency converter. The equations of the magnetic reducer state describing its functional modes were solved by means of the Mathcad mathematical program.

2021 ◽  
Vol 2021 (5) ◽  
pp. 38-48
Author(s):  
R.S. Kryshchuk ◽  
◽  
S.I. Gavryluk ◽  
A.A. Tsugankova ◽  
◽  
...  

The development of a reliable gearless electric drive for antennas of ship radars is an important problem. To solve the problem, this article proposes to use an axial induction motor (AIM) with a massive bimetallic disk-shaped rotor. The AIM model is presented, which consists of three computational domains with the boundary condition of symmetry. To calculate the electromagnetic field, a well-known analytical method of integral transformations is used taking into account the variable along the radial coordinate of the linear speed of the rotor. Ready-to-use expressions are presented for the development of a program for the numerical calculation of the magnetic field and energy characteristics of the motor. Algorithm is developed for calculating the dimensions of the AIM, operating at different speeds with a frequency converter. The numerical calculation program is used to calculate the dimensions AIM. It uses well-known recommendations for the parameters of the electromagnetic field in the magnetic core and in the air gap. The calculation of the dimensions of the AIM for ship radars “Mius” is performed. The dependence of the efficiency on the current frequency for different rotor’s frequencies is investigated. The energy indicators of the AIM are investigated at a variable torque on the shaft and at different rotor speeds. The parameters of the power source for the AIM of ship radars are established. References 20, figures 5, tables 3.


Author(s):  
I. N. Belezyakov ◽  
K. G. Arakancev

At present time there is a need to develop a methodology for electric motors design which will ensure the optimality of their geometrical parameters according to one or a set of criterias. With the growth of computer calculating power it becomes possible to develop methods based on numerical methods for electric machines computing. The article describes method of a singlecriterion evolutionary optimization of synchronous electric machines with permanent magnets taking into account the given restrictions on the overall dimensions and characteristics of structural materials. The described approach is based on applying of a genetic algorithm for carrying out evolutionary optimization of geometric parameters of a given configuration of electric motor. Optimization criteria may be different, but in automatic control systems high requirements are imposed to electromagnetic torque electric machine produces. During genetic algorithm work it optimizes given geometric parameters of the electric motor according to the criterion of its torque value, which is being calculated using finite element method.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1738
Author(s):  
Vanessa Neves Höpner ◽  
Volmir Eugênio Wilhelm

The use of static frequency converters, which have a high switching frequency, generates voltage pulses with a high rate of change over time. In combination with cable and motor impedance, this generates repetitive overvoltage at the motor terminals, influencing the occurrence of partial discharges between conductors, causing degradation of the insulation of electric motors. Understanding the effects resulting from the frequency converter–electric motor interaction is essential for developing and implementing insulation systems with characteristics that support the most diverse applications, have an operating life under economically viable conditions, and promote energy efficiency. With this objective, a search was carried out in three recognized databases. Duplicate articles were eliminated, resulting in 1069 articles, which were systematically categorized and reviewed, resulting in 481 articles discussing the causes of degradation in the insulation of electric motors powered by frequency converters. A bibliographic portfolio was built and evaluated, with 230 articles that present results on the factors that can be used in estimating the life span of electric motor insulation. In this structure, the historical evolution of the collected information, the authors who conducted the most research on the theme, and the relevance of the knowledge presented in the works were considered.


Vestnik IGEU ◽  
2020 ◽  
pp. 31-45
Author(s):  
T.H. Abuziarov ◽  
A.S. Plehov ◽  
A.B. Dar’enkov ◽  
A.I. Ermolaev

When designing electric drives based on brushless DC motors with permanent magnets (BLDC), which have low level torque pulsations, the problem of modelling non-standard topological solutions appears. The known models of BLDC motors are either based on the assumptions about the symmetry of the stator pa-rameters of the electric motor and/or the ideal form of the phase back-EMF waveform, which reduce the accuracy of evaluating the effectiveness of the proposed solutions or prove unusable for modelling an operation of the electric motor with a non-standard semiconductor converter. It is necessary to develop a mathematical model of the BLDC motor-based electric drive that takes into account the structural features of the electric motor and allows for semiconductor converter configuration variability. The model is designed in the Matlab Simulink environment. The verification is carried out by comparing the modelling results with experimental data obtained previously by other researchers. The proposed method for generating phase back-EMF in the BLDC motor model provides the possibility for the user to set the EMF form templates independent for each phase. The proposed method for stator circuit simulating provides the user with access to each of the stator windings leads as well as with the possibility of asymmetric determination of each parameter of the electric motor. Upon verification, it has been shown that the difference in the control points between the simulated and experimental speed-torque curves does not exceed 3,5 %. The developed model allows analyzing the static and dynamic characteristics of operation modes of non-standard topology BLDC motor-based electric drives taking into account the stator pa-rameters asymmetry and the real phase back-EMF waveform. The specified features of the model allow exploring the operation of the designed electric drive, taking into account the BLDC motor and converter design. The model can be applied when checking atypical design decisions and when changing the set parameters of the electric drive and restrictions on working conditions and target functions to refine the control system algorithms and automate the search for optimal parameters of the motor and the semiconductor converter.


2019 ◽  
Vol 5 (2) ◽  
pp. 83-91
Author(s):  
Evgeny Yu. Sundukov ◽  
Nadezhda A. Tarabukina

Background: The arch trestle allows using two working surfaces: internal (under the arch) and external (over the arch) which may be used for moving of the transport pods. Transport pods include magnetic field sources, and the trestle is equipped with a stator winding. The stator winding is subdivided into the accelerating winding and suspension and levitation winding. As an option, the winding providing levitation can be replaced with permanent magnets. Aim: to show capacities of the arch trestle for transportation of passengers and goods. Methods: patent search, modeling. Results: simultaneous transportation of goods and passengers is possible both in the same and opposite directions. Conclusion: the efficiency of the transport system increases due to bilateral movement of modules.


Author(s):  
Dmitry Shprekher ◽  
◽  
Gennady Babokin ◽  
Evgeny Kolesnikov ◽  
Dmitry Ovsyannikov ◽  
...  

The article analyzes the uneven loading of the scraper conveyor electric motors. The most common type of multi-motor conveyor is considered here: two-drive, with head and end drives connected through gearboxes and sprockets by an endless chain with scrapers. The simulation results are presented for three variants of com-binations of parameters of electric drives. It has been established that the use of a two-motor variable frequen-cy drive of a scraper conveyor powered by a single frequency converter inevitably entails uneven loading of the electric motors of the head and end drives. To eliminate this disadvantage, it is proposed to supply each electric motor from its own frequency converter. A system of automatic load balancing is proposed. The implementation and the result of the work of the load balancing system are carried out on a model in the Matlab / Simulink system.


2012 ◽  
Vol 522 ◽  
pp. 891-894
Author(s):  
Lu Yang ◽  
Ming Li Sun ◽  
Liang Dao Tang ◽  
Guang Ming Cheng

This paper shows how the circular motion of a rotor with permanent magnets generates an induced EMF in a stator winding. The generated voltage is calculated with moving mesh in COMSOL Multiphysics as a function of time during the rotation. The model also shows the influence on the voltage from material parameters, rotation velocity, and number of turns in the winding.


2013 ◽  
Vol 31 (2) ◽  
pp. 239-248 ◽  
Author(s):  
Yu Zhang ◽  
Jinliang Liu

AbstractIn this paper, a new kind of solid-state Marx generator based on synchronous transformer type magnetic switches (TTMS) is put forward, and the TTMSs with new winding structures are used to substitute all the spark gaps in the traditional Marx generator for the purposes of solidification and long life time. As the new type of TTMS with high step-up ratio and low saturated inductances is employed, the proposed Marx generator becomes a compact combination of pulse transformer, magnetic switch, and Marx capacitors. The stages of the Marx capacitors can be synchronously charged in parallel before the magnetic core saturates, and these Marx capacitors also can synchronously discharge in series. The establishing time of the proposed Marx generator is at ns range. As the new type of self-reset TTMS is used, the input voltage of the Marx generator decreases to a low level less than 1 kV while the output voltage can easily reach a high level ranging from dozens of kV to hundreds of kV.


Sign in / Sign up

Export Citation Format

Share Document