scholarly journals SYNCHRONOUS ELECTRIC MOTOR WITH HIGHER SPEED ROTATION AND BALANCED ROTOR

Author(s):  
Anatoly Yu. Afanasyev ◽  
Valeriy G. Makarov ◽  
Alexey A. Petrov ◽  
Pavel F. Kruglov

Increasing the speed of rotation of electric motors is an urgent task for turbine mechanisms – pumps, fans, compressors. Traditional synchronous motors have a rotation speed that is less than or equal to the frequency of the supply voltage. The article proposes a design and considers the principle of operation of a synchronous electric motor with double rotation speed. It has three reluctance rotors with one pole, for static and dynamic balancing, and the stator winding is supplied with voltages out of phase by π/6. The proposed design of a synchronous motor with eighteen phases of the stator winding and, with three rotors, the axes of which are offset relative to the axis of rotation of the output shaft. The use of such a design makes it possible to double the rotation speed of the output shaft in comparison with the frequency of the supply voltages. A description of the principle of operation of the motor and its mathematical description are given, taking into account the structural features of the stator-rotor magnetic circuit. The main advantage of the proposed engine in comparison with a high-speed engine is static and dynamic balancing.

2018 ◽  
Vol 4 (2) ◽  
pp. 73-91 ◽  
Author(s):  
Konstantin K. Kim

Aim: development of the Russian version of the high-speed transport system “Hyperloop” characterized by improved technical and economic indicators. Methods: We use the method of perforating the shell of the head part of the passenger capsule is used, the movement of which is carried out by a linear electric motor with a stator winding located on the pipe. Results: As the research showed at a speed of about 500 km/h for the creation of vacuum we will spend more energy than overcoming the friction of the capsule on air. Therefore the density of air in the pipe can be lowered only by 1.5–2 times. Conclusion: The construction of the vacuum-levitating transport in Russia is reasonable and justified economically but only among the densely populated centers, i.e. mainly in the European part of Russia.


2021 ◽  
Vol 4 (1(60)) ◽  
pp. 42-48
Author(s):  
Mykola Kulyk ◽  
Volodymyr Kvasnikov ◽  
Dmytro Kvashuk ◽  
Anatolii Beridze-Stakhovskyi

The use of high-precision measuring instruments for determining the torque of electric motors in such areas as medicine, motor transport, shipping, aviation requires the improvement of the metrological characteristics of measuring instruments. This, in turn, requires an accurate assessment of their error. Of particular importance is the measurement of power at high-speed installations, where in some cases conventional measurement systems are either unsuitable or have low accuracy. Thus, the use of high-speed turbomachines in aviation, transport, and rocketry creates an urgent need for the development of high-quality measuring instruments for conducting precise research. In turn, in the absence of means for accurately determining the error, attempts are made to predict them. This makes it possible to timely identify the influence of many factors on the accuracy of measuring instruments. The increase in the error arises, as a rule, through abrupt changes in the measurement conditions. Such errors are unpredictable, and their significance is difficult to predict. In the course of the study, the K-nearest neighbors method was used, to establish criteria for which a gross error may occur. The results obtained make it possible to establish threshold values at which the maximum deviation can be established under various conditions of the experiment. In a computational experiment using the K-nearest neighbors method, the following factors were investigated: vibration; temperature rise of measuring sensors; instabilities in the supply voltage of the electric motor, which affect the accuracy of the strain gauge and frequency converter. As a result, the maximum errors were obtained depending on the indicated influence factors. It has been experimentally confirmed that the K-nearest neighbors method can be used to classify deviations of the nominal value of the error of measuring instruments under various measurement conditions. A metrological stand has been developed for the experiment. It includes a strain gauge sensor for measuring torque and a photosensitive sensor for measuring the speed of the electric motor. Signal conversion from these sensors is implemented on the basis of the ESP8266 microcontroller


Author(s):  
Theodore E. Blazejewski ◽  
Rajneesh Moudgil

Traditionally, large slow speed integral gas engines were used in Pipeline applications. Today, the need exists for smaller high-speed units with a lower total installed cost and quicker return on investments. Utilizing well over 100 years of gas compressor experience, Dresser-Rand has developed a new Big Oilfield Separable (BOS) frame and Dresser-Rand Advanced Reciprocating Technology (DART) cylinder line-up to serve the high-speed engine and motor driven Pipeline/Injection markets. By incorporating a longer stroke capability, this compressor also serves the electric motor driven Process Gas markets. First, this paper will identify the complete design, development, and test verification of the frame and running gear. Second, this paper will then identify the complete design, development, and performance verification of the DART cylinder. Together, the BOS frame and DART cylinders provide an economical replacement to the older slow speed integral gas engines that are utilized in Pipeline applications.


Author(s):  
Aleksei A. Petrov ◽  
Aleksei V. Makarov ◽  
Valeriy G. Makarov ◽  
Nikita Yu. Grigoriev

Development of the design of a synchronous electric motor with six C-shaped stator teeth, the rotor axis of rotation of which is displaced relative to the axis of rotation of the output shaft. The rotational speed of the output shaft is equal to twice the rotational speed of the stator magnetic flux. Determination of the phase shifts of the supply voltages in time and the spatial position of the stator windings. Visualization of the principle of operation of the electric motor under consideration, namely, step-by-step observation of the position of the rotor in space, when the sinusoidal voltage wave changes by an angle equal to π, with a step of π/6. Mathematical description of the engine under consideration, with all the structural features of the stator-rotor magnetic circuit. In the course of the work, analytical calculation methods were applied. As a result of the study, the basic laws of operation were determined, as well as the design and principle of operation of the considered electric motor with a suspended rotation speed.


2019 ◽  
Author(s):  
Zachary VanAernum ◽  
Florian Busch ◽  
Benjamin J. Jones ◽  
Mengxuan Jia ◽  
Zibo Chen ◽  
...  

It is important to assess the identity and purity of proteins and protein complexes during and after protein purification to ensure that samples are of sufficient quality for further biochemical and structural characterization, as well as for use in consumer products, chemical processes, and therapeutics. Native mass spectrometry (nMS) has become an important tool in protein analysis due to its ability to retain non-covalent interactions during measurements, making it possible to obtain protein structural information with high sensitivity and at high speed. Interferences from the presence of non-volatiles are typically alleviated by offline buffer exchange, which is timeconsuming and difficult to automate. We provide a protocol for rapid online buffer exchange (OBE) nMS to directly screen structural features of pre-purified proteins, protein complexes, or clarified cell lysates. Information obtained by OBE nMS can be used for fast (<5 min) quality control and can further guide protein expression and purification optimization.


2018 ◽  
Vol 77 (6) ◽  
pp. 337-346 ◽  
Author(s):  
A. B. Kosarev ◽  
A. V. Barch ◽  
E. N. Rozenberg

Abstract. High-speed railways are fast-growing and promising type of traffic. In Russia development of high-speed railway service is associated with the solution of a number of problems, including infrastructure. Authors propose to use earth connection of the railway catenary with the help of an artificial earthing switch on currently designed high-speed line Moscow—Kazan for 2×25 kV power supply system. Taking into account requirements for electrical safety conditions for maintenance of the track and earthed catenary supports, paper justifies method for calculating allowable voltages of rail—earth points and supports of catenary. Methods takes into account structural features of ballastless track superstructure used for high-speed lines. It is estimated that the voltages admissible under the electrical safety conditions are random in nature and distributed logarithmically normal. When calculating probability of safe operation, one should take into account random nature of both permissible stresses and those actually occurring on the track. It is estimated that the probability of safe operation in traction networks of sections with ballastless track superstructure does not exceed a similar value in electrified sections with the conventional structure of a ballast prism. Feasibility of using a 2×25 kV earth system using an artificial earth connection is confirmed, recommendations on its use are given. Authors substantiate allowable values of the rail—earth voltage and catenary supports, which practically exclude the occurrence of hazardous situations for personnel maintaining the track in sections with ballastless track superstructure.


2018 ◽  
Vol 27 (07) ◽  
pp. 1850116
Author(s):  
Yuanxin Bao ◽  
Wenyuan Li

A high-speed low-supply-sensitivity temperature sensor is presented for thermal monitoring of system on a chip (SoC). The proposed sensor transforms the temperature to complementary to absolute temperature (CTAT) frequency and then into digital code. A CTAT voltage reference supplies a temperature-sensitive ring oscillator, which enhances temperature sensitivity and conversion rate. To reduce the supply sensitivity, an operational amplifier with a unity gain for power supply is proposed. A frequency-to-digital converter with piecewise linear fitting is used to convert the frequency into the digital code corresponding to temperature and correct nonlinearity. These additional characteristics are distinct from the conventional oscillator-based temperature sensors. The sensor is fabricated in a 180[Formula: see text]nm CMOS process and occupies a small area of 0.048[Formula: see text]mm2 excluding bondpads. After a one-point calibration, the sensor achieves an inaccuracy of [Formula: see text][Formula: see text]1.5[Formula: see text]C from [Formula: see text]45[Formula: see text]C to 85[Formula: see text]C under a supply voltage of 1.4–2.4[Formula: see text]V showing a worst-case supply sensitivity of 0.5[Formula: see text]C/V. The sensor maintains a high conversion rate of 45[Formula: see text]KS/s with a fine resolution of 0.25[Formula: see text]C/LSB, which is suitable for SoC thermal monitoring. Under a supply voltage of 1.8[Formula: see text]V, the maximum energy consumption per conversion is only 7.8[Formula: see text]nJ at [Formula: see text]45[Formula: see text]C.


2020 ◽  
Vol 11 (1) ◽  
pp. 127
Author(s):  
Fuchun Yang ◽  
Dianrui Wang

Vibration properties of high-speed rotating and revolving planet rings with discrete and partially distributed stiffnesses were studied. The governing equations were obtained by Hamilton’s principle based on a rotating frame on the ring. The governing equations were cast in matrix differential operators and discretized, using Galerkin’s method. The eigenvalue problem was dealt with state space matrix, and the natural frequencies and vibration modes were computed in a wide range of rotation speed. The properties of natural frequencies and vibration modes with rotation speed were studied for free planet rings and planet rings with discrete and partially distributed stiffnesses. The influences of several parameters on the vibration properties of planet rings were also investigated. Finally, the forced responses of planet rings resulted from the excitation of rotating and revolving movement were studied. The results show that the revolving movement not only affects the free vibration of planet rings but results in excitation to the rings. Partially distributed stiffness changes the vibration modes heavily compared to the free planet ring. Each vibration mode comprises several nodal diameter components instead of a single component for a free planet ring. The distribution area and the number of partially distributed stiffnesses mainly affect the high-order frequencies. The forced responses caused by revolving movement are nonlinear and vary with a quasi-period of rotating speed, and the responses in the regions supported by partially distributed stiffnesses are suppressed.


Micromachines ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 551
Author(s):  
Zhongjian Bian ◽  
Xiaofeng Hong ◽  
Yanan Guo ◽  
Lirida Naviner ◽  
Wei Ge ◽  
...  

Spintronic based embedded magnetic random access memory (eMRAM) is becoming a foundry validated solution for the next-generation nonvolatile memory applications. The hybrid complementary metal-oxide-semiconductor (CMOS)/magnetic tunnel junction (MTJ) integration has been selected as a proper candidate for energy harvesting, area-constraint and energy-efficiency Internet of Things (IoT) systems-on-chips. Multi-VDD (low supply voltage) techniques were adopted to minimize energy dissipation in MRAM, at the cost of reduced writing/sensing speed and margin. Meanwhile, yield can be severely affected due to variations in process parameters. In this work, we conduct a thorough analysis of MRAM sensing margin and yield. We propose a current-mode sensing amplifier (CSA) named 1D high-sensing 1D margin, high 1D speed and 1D stability (HMSS-SA) with reconfigured reference path and pre-charge transistor. Process-voltage-temperature (PVT) aware analysis is performed based on an MTJ compact model and an industrial 28 nm CMOS technology, explicitly considering low-voltage (0.7 V), low tunneling magnetoresistance (TMR) (50%) and high temperature (85 °C) scenario as the worst sensing case. A case study takes a brief look at sensing circuits, which is applied to in-memory bit-wise computing. Simulation results indicate that the proposed high-sensing margin, high speed and stability sensing-sensing amplifier (HMSS-SA) achieves remarkable performance up to 2.5 GHz sensing frequency. At 0.65 V supply voltage, it can achieve 1 GHz operation frequency with only 0.3% failure rate.


Sign in / Sign up

Export Citation Format

Share Document