scholarly journals Oxidative stress, antioxidants, and reproductive problems during the pandemic (clinical lecture)

2021 ◽  
Vol 2 (3) ◽  
pp. 67-74
Author(s):  
Vladimir V. Borisov ◽  

Oxidative stress (OS) results from imbalance between the inherent production of reactive oxygen species (ROS) and the capture of ROS by natural antioxidants in the living organism, as well as from failure of antioxidant systems involving cells’ exposure to excess levels of ROC, molecular oxygen or its active forms (free radicals). Pathologic conditions result in imbalance between the quantity of ROC and free radicals produced, and the possibilities of their utilization. Consequently, free radicals, that the antioxidant systems have been unable to neutralize, damage cell structures (membranes, mitochondria, DNA, etc.). These processes occur both in germ cells (sperm, oocytes), and spermoplasm. In fact, a number of recent studies have confirmed that COVID-19 is a gender-related disorder: most patients with severe infection are males. Studying the viral entry mechanism has revealed that it may cause the profound damage to cells of reproductive system, and lead to delayed reproductive function impairment in young men and adolescents. Vitamin and mineral supplementation with optimum proportion of ingredients may be used as an efficient reinforcement for therapy aimed at fertility preservation and restoration in the current context of the pandemic.

2016 ◽  
Vol 24 (3) ◽  
pp. 319-326 ◽  
Author(s):  
Erzsébet Fogarasi ◽  
Mircea Dumitru Croitoru ◽  
Ibolya Fülöp ◽  
Enikő Nemes-Nagy ◽  
Robert Gabriel Tripon ◽  
...  

Abstract Oxidative stress appears when the amount of free radicals that are formed in a living organism exceed its spin-trapping ability. One of the most dangerous free radicals that are formed in the human body is the hydroxyl radical. It can alter several biomolecules, including the unsaturated fatty acids; this process is known as lipid peroxidation and can lead to cell necrosis and generation of several harmful byproducts including malondialdehyde, which serves also as a biomarker of oxidative stress. A new HPLC method with visible detection was developed for the detection of malondialdehyde in human serum and saliva samples. The method was verified in terms of specificity, linearity, limits of detection (0.35 ng/ml), limit of quantification (1.19 ng/ml), recovery (90.13±10.25 – 107.29±14.33) and precision (3.84±1.49% – 6.66±1.76%). An analysis time of only 1 minute was obtained and no interferences from the matrices were observed. Statistical analysis (Pearson correlation test) showed a moderate correlation (R = 0.5061, p = 0.0099) between serum and saliva concentrations (N = 25). The possibility of measuring salivary concentrations of malondialdehyde extents the applications of oxidative stress/lipid peroxidation estimations to categories of population unreachable before (pregnant women, small children, etc); repeated sample studies are also easier to make.


Author(s):  
Fasna K. A. ◽  
Geetha N. ◽  
Jean Maliekkal

Background: Ageing is characterized by a gradual decline in body functions and decreased ability to maintain homeostasis. The free radical theory of ageing proposed by Harman D states that ageing is a result of cumulative damage incurred by free radical reactions. Free radicals are highly reactive molecular species with unpaired electrons; generated in the body by several physiological processes. Prime target to free radical attack are the polyunsaturated fatty acids of cell membranes causing lipid peroxidation. The free radicals are neutralized by the exogenous and endogenous antioxidant systems. Oxidative stress occurs when large number of free radicals are produced or the antioxidant activity is impaired. The present study is focused to find out the role of oxidative stress in ageing.Methods: A cross sectional observational study was undertaken to assess the oxidative stress in ageing; by determining the levels of lipid peroxidation product- malondialdehyde (MDA), the antioxidants- superoxide dismutase (SOD) and ceruloplasmin in various age groups. 150 healthy subjects were selected randomly and categorised into three different age groups of 20-30 years, 40-59 years and 60-90 years; with 50 subjects in each group. Results were expressed as mean ± standard deviation.Results: a significant elevation in serum MDA level and a decline in SOD were observed in 40-59 years and 60-90 years age groups. However, an elevated ceruloplasmin level was found in the above age groups.Conclusions: Aforementioned observations are suggestive of an association between oxidative stress and the progression of ageing process.


1999 ◽  
Vol 7 (1) ◽  
pp. 31-51 ◽  
Author(s):  
Klara D Vichnevetskaia ◽  
D N Roy

Increased levels of active oxygen species or free radicals can create an oxidative stress. Concentration of free radicals in living cells increases as a result of exposure to environmental stresses that lead to aging, carcinogenesis, and immunodeficiencies in animals, and membrane leakage, senescence, chlorophyll destruction, and decreased photosynthesis in plants. The antioxidative system of higher plants consists of enzymes, low molecular weight compounds (among them peptides, vitamins, flavonoids, phenolic acids, alkaloids, etc.), and integrated detoxification chains. Enzymatic defense in plants include enzymes capable of removing, neutralizing, or scavenging oxy-intermediates. Catalases and superoxide dismutases are the most efficient antioxidant enzymes. Free radicals cause cell damage by a lipid peroxidation mechanism, which results in a blockade of natural antioxidant systems. Application of synthetic antioxidants can assist in coping with oxidative stress. There are very few publications on effects of synthetic antioxidants on plant growth and physiology. One of the examples of such synthetic antioxidant is 2-methyl-4-dimethylaminomethyl-5-hydroxybenzimidazole (Ambiol), which substantially promoted growth of agricultural and forestry plant species. Ambiol also demonstrated antitranspirant properties, increasing drought tolerance of conifers and agricultural species. The response of plants to Ambiol is under high genetic control. The identification of genes responsible for the reaction of plants to Ambiol may lead to attempts in genetic engineering of organisms with increased tolerance to oxidative stress. It seems impossible to find a universal scavenger trapping all free radicals active in the organism. However, analysis of the structure–activity relationships in antioxidants can contribute to the search for effective antioxidants.Key words: oxidative stress, lipid peroxidation, free radicals, natural and synthetic antioxidants, Ambiol.


Author(s):  
Gilead Ebiegberi Forcados ◽  
Aliyu Muhammad ◽  
Olusola Olalekan Oladipo ◽  
Sunday Makama ◽  
Clement Adebajo Meseko

COVID-19 is a zoonotic disease with devastating economic and public health impacts globally. Being a novel disease, current research is focused on a clearer understanding of the mechanisms involved in its pathogenesis and viable therapeutic strategies. Oxidative stress and inflammation are intertwined processes that play roles in disease progression and response to therapy via interference with multiple signaling pathways. The redox status of a host cell is an important factor in viral entry due to the unique conditions required for the conformational changes that ensure the binding and entry of a virus into the host cell. Upon entry into the airways, viral replication occurs and the innate immune system responds by activating macrophage and dendritic cells which contribute to inflammation. This review examines available literature and proposes mechanisms by which oxidative stress and inflammation could contribute to COVID-19 pathogenesis. Further, certain antioxidants currently undergoing some form of trial in COVID-19 patients and the corresponding required research gaps are highlighted to show how targeting oxidative stress and inflammation could ameliorate COVID-19 severity.


Author(s):  
Georgina Crespo ◽  
Luis Alejandro Di Toro ◽  
Valbuena Desiree ◽  
Jose Luis Perez Vicuña ◽  
María Paula Díaz ◽  
...  

Cancer development is a product of cellular growth and proliferation caused by DNA mutations, nevertheless, other processes are able to favor tumoral progression, such as the activity of reactive oxygen species (ROS) produced within cells as a result of different metabolic reactions. Oxidative stress is defined as an imbalance between free radicals and highly reactive metabolites synthesis and the antioxidant system capacity to eliminate these molecules. In this sense, the overproduction of free radicals is a typical feature of neoplastic cells that allows the promotion of cellular processes related to survival, proliferation, invasion, and metastasis. Furthermore, underlying mechanisms involved in malignant transformation can modify the antioxidant systems in charge of ROS elimination. However, cancer has the particularity of presenting a dual behavior in which both antioxidant or prooxidant activity within tumoral cells can predominate depending on the stage of the disease. As a consequence, many therapeutic efforts have been directed into the stimulation or inhibition of oxidant and antioxidant components in the tumor microenvironment. The aim of this review is to describe the role of oxidative stress in cancer biology and its therapeutic potential.


2020 ◽  
Vol 9 (3) ◽  
pp. 191-199 ◽  
Author(s):  
Fatemeh Jamshidi-kia ◽  
Joko Priyanto Wibowo ◽  
Mostafa Elachouri ◽  
Rohollah Masumi ◽  
Alizamen Salehifard-Jouneghani ◽  
...  

Free radicals are constructed by natural physiological activities in the human cells as well as in the environment. They may be produced as a result of diet, smoking, exercise, inflammation, exposure to sunlight, air pollutants, stress, alcohol and drugs. Imbalanced redox status may lead to cellular oxidative stress, which can damage the cells of the body, resulting in an incidence of various diseases. If the endogenous antioxidants do not stop the production of reactive metabolites, they will be needed to bring about a balance in redox status. Natural antioxidants, for example plants, play an important part in this context. This paper seeks to report the available evidence about oxidative stress and the application of plants as antioxidant agents to fight free radicals in the human body. For this purpose, to better understand oxidative stress, the principles of free radical production, the role of free radicals in diseases, antioxidant defense mechanisms, and the role of herbs and diet in oxidative stress are discussed.


2020 ◽  
Vol 10 (1) ◽  
pp. 90
Author(s):  
Nur Ariska Nugrahani

Radikal bebas yang berbahaya jika konsentrasi ROS akan meningkat sehingga akan mengakibatkan stress oksidatif. Stress oksidatif biasanya disebabkan oleh konsentrasi tinggi dari radikal bebas dalam sel dan jaringan yang dapat diinduksi oleh beberapa faktor negatif seperti gamma, UV, radiasi sinar-X, tekanan psiko-emosional dan makanan yang tercemar.Untuk meminimalisir radikal bebas dalam tubuh diperlukan antioksidan alami seperti ekstrak buah kiwi dan ekstrak buah apel. Uji aktivitas antioksidan pada masing- masing ekstrak dilakukan dengan metode DPPH (1,1- difenil-2-pikrihidazil). Hasil menunjukkan bahwa nilai IC50 dari ekstrak buah kiwi lebih rendah daripada IC50 ekstrak buah apel. Hal ini menunjukkan bahwa ekstrak buah kiwi mempunyai aktivitas antioksidan lebih kuat dari ekstrak buah apel. Keyword : Radikal bebas, DPPH, Ekstrak buah kiwi, Ekstrak buah apel Free radicals will be dangerous if the ROS concentration will increase and causes oxidative stress. Oxidative stress is usually caused by high concentrations of free radicals in cells and tissues which can be induced by several negative factors such as gamma, UV, X-ray radiation, psycho-emotional pressure and contaminated food. To minimize free radicals in the body natural antioxidants such as kiwi fruit extract and apple extract. The antioxidant activity test on each extract was carried out by the DPPH method (1,1-diphenyl-2-picrihydazyl). The results showed that IC50 value of kiwi fruit extract was lower than IC50 of apple fruit extract. This shows that kiwi fruit extract has stronger antioxidant activity than apple extract. Keyword : free radicals, DPPH, kiwi fruit extract, apple fruit extract


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Sonia Gandhi ◽  
Andrey Y. Abramov

Biological tissues require oxygen to meet their energetic demands. However, the consumption of oxygen also results in the generation of free radicals that may have damaging effects on cells. The brain is particularly vulnerable to the effects of reactive oxygen species due to its high demand for oxygen, and its abundance of highly peroxidisable substrates. Oxidative stress is caused by an imbalance in the redox state of the cell, either by overproduction of reactive oxygen species, or by dysfunction of the antioxidant systems. Oxidative stress has been detected in a range of neurodegenerative disease, and emerging evidence from in vitro and in vivo disease models suggests that oxidative stress may play a role in disease pathogenesis. However, the promise of antioxidants as novel therapies for neurodegenerative diseases has not been borne out in clinical studies. In this review, we critically assess the hypothesis that oxidative stress is a crucial player in common neurodegenerative disease and discuss the source of free radicals in such diseases. Furthermore, we examine the issues surrounding the failure to translate this hypothesis into an effective clinical treatment.


2019 ◽  
Vol 2019 ◽  
pp. 1-19 ◽  
Author(s):  
Rosa Vona ◽  
Lucrezia Gambardella ◽  
Camilla Cittadini ◽  
Elisabetta Straface ◽  
Donatella Pietraforte

Metabolic syndrome (MS) represents worldwide public health issue characterized by a set of cardiovascular risk factors including obesity, diabetes, dyslipidemia, hypertension, and impaired glucose tolerance. The link between the MS and the associated diseases is represented by oxidative stress (OS) and by the intracellular redox imbalance, both caused by the persistence of chronic inflammatory conditions that characterize MS. The increase in oxidizing species formation in MS has been accepted as a major underlying mechanism for mitochondrial dysfunction, accumulation of protein and lipid oxidation products, and impairment of the antioxidant systems. These oxidative modifications are recognized as relevant OS biomarkers potentially able to (i) clarify the role of reactive oxygen and nitrogen species in the etiology of the MS, (ii) contribute to the diagnosis/evaluation of the disease’s severity, and (iii) evaluate the utility of possible therapeutic strategies based on natural antioxidants. The antioxidant therapies indeed could be able to (i) counteract systemic as well as mitochondrial-derived OS, (ii) enhance the endogenous antioxidant defenses, (iii) alleviate MS symptoms, and (iv) prevent the complications linked to MS-derived cardiovascular diseases. The focus of this review is to summarize the current knowledge about the role of OS in the development of metabolic alterations characterizing MS, with particular regard to the occurrence of OS-correlated biomarkers, as well as to the use of therapeutic strategies based on natural antioxidants.


Sign in / Sign up

Export Citation Format

Share Document