scholarly journals Toxicokinetics of aluminum in rats

2020 ◽  
Vol 99 (9) ◽  
pp. 1007-1010
Author(s):  
Elza N. Usmanova ◽  
Anna S. Fazlyeva ◽  
Denis O. Karimov ◽  
Munira M. Ziatdinova ◽  
Rustem A. Daukaev ◽  
...  

Introduction. Aluminum is one of the most common elements in nature that is potentially toxic to humans. Aluminum compounds are widely used in the aviation and food industries, metallurgy, electrical engineering, and medicine. Aluminum is capable of accumulating in the human body, which creates a risk for the development of severe diseases. Material and methods. Acute intoxication of aluminum hydroxide was simulated on white outbred rats weighing 170-220 g, divided into 8 groups (intact and 7 experimental). By the atomic absorption method, the concentrations of aluminum, calcium, magnesium, and iron in the organs of laboratory animals (kidneys, liver, blood, and brain) were determined 1, 2, 4, 6, 24, 48, and 96 hours after intoxication. Results. The accumulation of aluminum was observed to a greater extent in the liver, kidneys, blood, to a lesser extent in the brain. Aluminum affects the homeostasis of essential elements, for example, in the experiment, a decrease in the content of calcium and magnesium in the organs of laboratory animals is observed. The seed level does not have a strong effect on the level of iron. At the end of the experiment, the concentration of aluminum in the liver, blood, and brain of rats remains higher than in the control group. Conclusion. Aluminum is capable of accumulating in vital organs and affecting the homeostasis of the essential elements of the body. The circulation of aluminum in the biological media of a living organism, like many processes, is undulating, and it can accumulate and diffuse for a long time in various organs of experimental animals.

Author(s):  
Zafer Sahin ◽  
Alpaslan Ozkurkculer ◽  
Omer Faruk Kalkan ◽  
Ahmet Ozkaya ◽  
Aynur Koc ◽  
...  

Abstract. Alterations of essential elements in the brain are associated with the pathophysiology of many neuropsychiatric disorders. It is known that chronic/overwhelming stress may cause some anxiety and/or depression. We aimed to investigate the effects of two different chronic immobilization stress protocols on anxiety-related behaviors and brain minerals. Adult male Wistar rats were divided into 3 groups as follows ( n = 10/group): control, immobilization stress-1 (45 minutes daily for 7-day) and immobilization stress-2 (45 minutes twice a day for 7-day). Stress-related behaviors were evaluated by open field test and forced swimming test. In the immobilization stress-1 and immobilization stress-2 groups, percentage of time spent in the central area (6.38 ± 0.41% and 6.28 ± 1.03% respectively, p < 0.05) and rearing frequency (2.75 ± 0.41 and 3.85 ± 0.46, p < 0.01 and p < 0.05, respectively) were lower, latency to center area (49.11 ± 5.87 s and 44.92 ± 8.04 s, p < 0.01 and p < 0.01, respectively), were higher than the control group (8.65 ± 0.49%, 5.37 ± 0.44 and 15.3 ± 3.32 s, respectively). In the immobilization stress-1 group, zinc (12.65 ± 0.1 ppm, p < 0.001), magnesium (170.4 ± 1.7 ppm, p < 0.005) and phosphate (2.76 ± 0.1 ppm, p < 0.05) levels were lower than the control group (13.87 ± 0.16 ppm, 179.31 ± 1.87 ppm and 3.11 ± 0.06 ppm, respectively). In the immobilization stress-2 group, magnesium (171.56 ± 1.87 ppm, p < 0.05), phosphate (2.44 ± 0.07 ppm, p < 0.001) levels were lower, and manganese (373.68 ± 5.76 ppb, p < 0.001) and copper (2.79 ± 0.15 ppm, p < 0.05) levels were higher than the control group (179.31 ± 1.87 ppm, 3.11 ± 0.06 ppm, 327.25 ± 8.35 ppb and 2.45 ± 0.05 ppm, respectively). Our results indicated that 7-day chronic immobilization stress increased anxiety-related behaviors in both stress groups. Zinc, magnesium, phosphate, copper and manganese levels were affected in the brain.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 229
Author(s):  
JunHyuk Woo ◽  
Hyesun Cho ◽  
YunHee Seol ◽  
Soon Ho Kim ◽  
Chanhyeok Park ◽  
...  

The brain needs more energy than other organs in the body. Mitochondria are the generator of vital power in the living organism. Not only do mitochondria sense signals from the outside of a cell, but they also orchestrate the cascade of subcellular events by supplying adenosine-5′-triphosphate (ATP), the biochemical energy. It is known that impaired mitochondrial function and oxidative stress contribute or lead to neuronal damage and degeneration of the brain. This mini-review focuses on addressing how mitochondrial dysfunction and oxidative stress are associated with the pathogenesis of neurodegenerative disorders including Alzheimer’s disease, amyotrophic lateral sclerosis, Huntington’s disease, and Parkinson’s disease. In addition, we discuss state-of-the-art computational models of mitochondrial functions in relation to oxidative stress and neurodegeneration. Together, a better understanding of brain disease-specific mitochondrial dysfunction and oxidative stress can pave the way to developing antioxidant therapeutic strategies to ameliorate neuronal activity and prevent neurodegeneration.


1998 ◽  
Vol 28 (3) ◽  
pp. 655-663 ◽  
Author(s):  
P. NOPOULOS ◽  
M. FLAUM ◽  
S. ARNDT ◽  
N. ANDREASEN

Background. Morphometry, the measurement of forms, is an ancient practice. In particular, schizophrenic somatology was popular early in this century, but has been essentially absent from the literature for over 30 years. More recently, evidence has grown to support the notion that aberrant neurodevelopment may play a role in the pathophysiology of schizophrenia. Is the body, like the brain, affected by abnormal development in these patients?Methods. To evaluate global deficit in development and its relationship to pre-morbid function, height was compared in a large group (N=226) of male schizophrenics and a group of healthy male controls (N=142) equivalent in parental socio-economic status. Patients in the lower quartile of height were compared to those in the upper quartile of height.Results. The patient group had a mean height of 177·1 cm, which was significantly shorter than the mean height of the control group of 179·4 (P<0·003). Those in the lower quartile had significantly poorer pre-morbid function as measured by: (1) psychosocial adjustment using the pre-morbid adjustment scales for childhood and adolescence/young adulthood, and (2) cognitive function using measures of school performance such as grades and need for special education. In addition, these measures of pre-morbid function correlated significantly with height when analysed using the entire sample.Conclusions. These findings provide further support to the idea that abnormal development may play a key role in the pathophysiology of schizophrenia. Furthermore, this is manifested as a global deficit in growth and function resulting in smaller stature, poorer social skills, and deficits in cognitive abilities.


2018 ◽  
Vol 12 (3) ◽  
pp. 321-325 ◽  
Author(s):  
Eliasz Engelhardt

Abstract The debates about the mind and its higher functions, and attempts to locate them in the body, have represented a subject of interest of innumerable sages since ancient times. The doubt concerning the part of the body that housed these functions, the heart (cardiocentric doctrine) or the brain (cephalocentric doctrine), drove the search. The Egyptians, millennia ago, held a cardiocentric view. A very long time later, ancient Greek scholars took up the theme anew, but remained undecided between the heart and the brain, a controversy that lasted for centuries. The cephalocentric view prevailed, and a new inquiry ensued about the location of these functions within the brain, the ventricles or the nervous tissue, which also continued for centuries. The latter localization, although initially inaccurate, gained traction. However, it represented only a beginning, as further studies in the centuries that followed revealed more precise definitions and localizations of the higher mental functions.


2018 ◽  
Vol 27 (8) ◽  
pp. 1203-1209
Author(s):  
Bok-Nam Park ◽  
Tae Sung Lim ◽  
Joon-Kee Yoon ◽  
Young-Sil An

Purpose: The purpose of this study was to investigate how intravenously injected bone marrow-derived mesenchymal stem cells (BMSCs) are distributed in the body of an Alzheimer’s disease (AD) animal model. Methods: Stem cells were collected from bone marrow of mice and labeled with Indium-111 (111In). The 111In-labeled BMSCs were infused intravenously into 3×Tg-AD mice in the AD group and non-transgenic mice (B6129SF2/J) as controls. Biodistribution was evaluated with a gamma counter and gamma camera 24 and 48 h after injecting the stem cells. Results: A gamma count of the brain showed a higher distribution of labeled cells in the AD model than in the control group at 24 (p = .0004) and 48 h (p = .0016) after injection of the BMSCs. Similar results were observed by gamma camera imaging (i.e., brain uptake in the AD model was significantly higher than that in the control group). Among the other organs, uptake by the spleen was the highest in both groups. More BMSCs were found in the lungs of the control group than in those of the AD group. Conclusions: These results suggest that more intravenously infused BMSCs reached the brain in the AD model than in the control group, but the numbers of stem cells reaching the brain was very small.


Author(s):  
Yevgen Honcharov ◽  
Nataliya Kriukova ◽  
Vladislav Markov ◽  
Igor Polyakov

The article deals with the actual problems of using the energy released by the human body. The question arises how much energy can the human body generate? Is it possible to use this energy for domestic and industrial needs? In the 18th and 19th centuries, the first scientific works on this topic appeared. It turned out that the charge carriers in the proteins of a living organism are protons and electrons, which, together with the electron-hole conduction system, create a single conductivity inherent only in a living organism. The electrical activity of the brain is assessed by voltage pulses with an amplitude of 500 μV of various frequencies from 0.5 to 55 Hz. It is impossible to receive pulses with such a frequency and such an amplitude from only ionic-type charge carriers. Electrochemical current sources are inertial; therefore, this fact can be direct evidence of the presence of electronic movement of charge carriers in the brain and the nervous system as a whole. It is quite realistic to use the thermal energy of the human body. Currently, the central building of the Stockholm railway station has been turned into a kind of experimental testing ground. Every day about 250 thousand people pass through the station building, who emit up to 25 MW of thermal energy. Most of it in the form of heated air is collected in ventilation and through heat exchangers energy is transferred to heat water in the heating system of another building. According to rough estimates, the efficiency of such a system can save up to 25% of the energy spent on heating the building. Inside a person, electric currents of various frequencies are generated in 7 biological power plants: in the heart, in the brain and in the five sense organs. All the electricity that is generated inside the human body is absorbed by its own tissues. Not a single electron produced inside a living organism leaves the human body, and does not pass into the environment, but is absorbed by the skin. This is the reason for the closure of the human electrical system. The body itself absorbs all the electricity that it previously produced. The energy generated by the human body is divided into mechanical, thermal, and electrical. The thermal energy of the human body can be used most effectively. Mechanical energy can also be used, but with much less efficiency. The electrical energy of the human body at this stage in the development of science and technology is practically impossible to use. Its use is likely to become real in the very distant future


Author(s):  
A. Aleksandrov ◽  
V. Konopelniuk ◽  
I. Kompanets ◽  
L. Ostapchenko

Obesity is one of the most common complex health problem. The pathway of serotonin synthesis takes part in neuroendocrine regulation, as well as in the regulation of a number of behavioral functions of the body and fat deposition. Serotonin is a mediator of the amine nature, which functions as a neurotransmitter and tissue hormone. The greatest amount of serotonin is synthesized in the brain and 12 duodenum. As a neurotransmitter, serotonin affects both directly and indirectly on the function of most brain cells. Female hormone progesterone influence on serotonin functions. One of the effect of progesterone is increasing of amount of fat tissue during the pregnancy. Long-term using of progesterone in hormone substitution therapy or as part of contraception also lead to fat accumulation effect. The levels of activity of serotonergic system enzymes, tryptophan hydroxylase, tryptophan decarboxylase and monoamine oxidase (MAO), and tryptophan, 5-hydroxytryptophan, serotonin and 5-hydroxyindoleacetic acid concentrations in the rat brain under obesity conditions caused by prolonged administration of progesterone were determined in this study. Studies have shown that the content of tryptophan, 5-hydroxytryptophan, serotonin and 5-hydroxyindoleacetic acid in the brain of rats under obesity caused by prolonged administration of progesterone increased in comparison with the rats of the control group. The levels of tryptophan hydroxylase and MAO activity decreased, and tryptophan decarboxylase activity levels increased in the rat brain under obesity conditions caused by prolonged administration of progesterone. Thus, as a result of our studies, we found an imbalance in the system of serotonin metabolism in the brain of rats with the development of hormonal obesity induced by prolonged administration of progesterone, which may indicate the involvement of the serotonergic neurotransmitter system in the mechanisms of the development of obesity and concomitant diseases.


2018 ◽  
Vol 17 (2) ◽  
pp. 62-65
Author(s):  
Pamela Guggina

Purpose An area of workplace well-being, and thus performance, which is now being recognized more widely is the mental health of employees. Research today demonstrates that exercise is good for the body and dramatically affects the brain. While it is widely accepted that regular exercise can promote weight loss, lower blood pressure and decrease the risks of diabetes, heart disease and certain cancers, it is also becoming clear that exercise can improve mood, coping skills and even treat clinical depression and anxiety. These findings further support the upward trend of companies offering a wider range of health benefits to their employees. Design/methodology/approach One example of the combined research, Rethorst et al., published a large meta-analysis exploring the interaction between physical activity and depression. They examined 58 randomized trails and found that participants in the studies who had been randomized to use exercise as a treatment for depression had significantly lower depression scores than participants who had been randomized to the non-exercise or “control” group. Both clinically depressed and non-clinically depressed individuals reported lower depression scores if they participated in the exercise group. Findings Exercise can be as effective as medication in treating depression. Regular exercise can decrease the symptoms of clinical anxiety. Employers who incentivize physical activity can dramatically lower healthcare costs. Benefits packages which promote physical activity can increase productivity and decrease absenteeism. Originality/value There will always be people with an illness which requires medication, but there appears to be a group that will benefit greatly from getting out and moving with regular exercise. The hope is that physicians with patients who have symptoms of depression and anxiety will encourage their patients to get some exercise to see if it helps. This can be something that is done alone or as an adjunct to talk therapy and/or pharmacologic treatment. Exercise is not likely to change the circumstances that make life challenging, but it can help all humans cope better with these challenges.


Author(s):  
Darlington Nnamdi Onyejike ◽  
McWilliams, Winifred Chidera ◽  
Mmaju, Chidinma Ifeyinwa ◽  
Okeke, Somadina Nnamdi ◽  
Obiesie, Ifechukwu Justicia ◽  
...  

Introduction: Goko cleanser is one of the popular herbal mixtures used by the Nigerian populace. This study was carried out to evaluate the effects of this herbal mixture on some haematological parameters of adult female Wistar rats. Methodology: A total of twenty five Wistar rats weighing about 160 – 280g were divided into five groups according to their corresponding weights. The groups were designated as groups 1 – 5. Group 1 served as the control group, while groups 2, 3, 4, and 5 received 1000mg/Kg, 1500mg/Kg, 2000mg/Kg and 4000mg/Kg respectively. Results: The TWBC, PCV, PLATELET count, and RBC and Hb showed a statistically significant (p<0.05) increase for the test groups 2 – 5 when compared to the control group. The body weight had a statistically significant (p<0.05) decrease in groups 2, 4, and 5; while group 3 had a statistically insignificant (p>0.05) decrease. Conclusion and Recommendation: This study revealed that Goko Cleanser contains some haemopoietic benefits, but inhibit appetite centres. Hence, this study recommends that further study be carried out on the effects of this herbal mixture on the brain so as to reveal the extent of its effect on the appetite centres.


2018 ◽  
Vol 7 (2) ◽  
pp. 193-210
Author(s):  
Maria Victória Branco Flores ◽  
Tuany Eichwald ◽  
Analú Mantovani ◽  
Viviane Glaser ◽  
Carine Raquel Richter Schimitz ◽  
...  

O Manganês (Mn) é um metal essencial para o organismo. É distribuído no ambiente e utilizado em processos industriais. Apesar de essencial, é neurotóxico à exposições cumulativas, causando uma desordem neurológica, o Manganismo. O estudo avaliou o efeito da administração subaguda de Mn sob a forma de cloreto e acetato de Mn, sobre a função mitocondrial e parâmetros oxidativos no encéfalo, bem como o acúmulo deste metal no encéfalo e tecidos periféricos de ratos adultos. Os ratos receberam 6 mg/kg de Mn i.p. na forma de cloreto ou acetato de Mn, 5 dias/semana por 4 semanas. O grupo controle recebeu solução salina 0,9% pela mesma via de administração e mesmo período. Foi mensurada a concentração de substâncias reativas ao ácido tiobarbitúrico (TBARS) e grupamentos NPSH, a atividade dos complexos I e II da cadeia respiratória no encéfalo e/ou estruturas cerebrais, bem como o peso corporal e a concentração de Mn e Fe no soro, encéfalo, tecido renal e hepático. Foi observada uma diminuição no ganho de peso corporal dos animais que receberam o Mn, um aumento na concentração/depósito de Mn no soro, encéfalo e tecido renal, tanto na forma de cloreto e acetato de Mn, quando comparados com o grupo controle. Além disso, houve um aumento significativo no conteúdo de NPSH no encéfalo e, embora não significativo, uma tendência de aumento da concentração de TBARS, no grupo que recebeu cloreto de Mn. Ainda, foi verificada uma inibição na atividade do complexo I no estriado dos animais expostos ao cloreto de Mn. Não houve diferença entre os grupos nas atividades do complexo I e II no encéfalo e hipocampo. Em conjunto, os dados indicam que a exposição ao Mn em baixas doses contribui para o desenvolvimento de estresse oxidativo e disfunção mitocondrial no SNC, com aparente predileção de dano ao estriado.Palavras-chave: Manganês. Exposição subaguda. Parâmetros oxidativos. Função mitocondrial. MANGANESE SUBACUTE INTOXICATION IN ADULT WISTAR RATS: EVALUATION OF OXIDATIVE PARAMETERS IN CNS AND METAL DEPOSITION IN DIFFERENT TISSUES ABSTRACT: Mn is an essential metal to the organism. It is distributed in the environment and used in industrial processes. Although essential, it is neurotoxic to cumulative exposures, and can cause a neurological disorder, called Manganism. This study evaluated the effect of subacute Mn as chloride and acetate of Mn administration on mitochondrial function and oxidative parameters in adult rat brain, as well as the accumulation of this metal in the brain and peripheral tissues. The rats received 6 mg/kg of Mn i.p., as Mn chloride or Mn acetate, 5 days/week for 4 weeks. The control group received 0.9% of saline solution in the same way of administration and in the same period. It was measured the concentration of thiobarbituric acid reactive substances (TBARS) and NPSH groups, the activity of mitochondrial complex I and II in brain and/or in the brain structures, as well as the body weight and the concentration of Mn and Fe accumulation. It was observed a decrease on body weight gain in animals exposed to Mn and an increase of concentration/deposit of Mn in serum, brain and kidney, in the both Mn chloride and acetate form when compared to the control group. In addition, there was a significant increase in brain NPSH content and, although it was not significant, a trend of increasing on TBARS concentration in the group that received Mn. Besides that, a significant inhibition of complex I activity was observed in the striatum of the animals exposed to Mn. There was not difference between groups on complex I and II in the brain and hippocampus. Together, these data indicate that exposure to Mn at low doses contributes to the development of oxidative stress and mitochondrial dysfunction in the CNS, with apparent predilection of striatum damage.Keywords: Manganese. Subacute exposure. Oxidative parameters. Mitochondrial function.


Sign in / Sign up

Export Citation Format

Share Document