scholarly journals Comparative Study on Antibacterial Activity of Crude and Silver Nanoparticles Synthesized Leaf Extract of Carica papaya against Chosen Isolates

Author(s):  
Pandiarajan. P ◽  
Andrew Pradeep ◽  
Januja J ◽  
Dhurairaj Satheesh

The Emergence of Human Pathogens with Antibiotic resistance genes has shifted the focus towards the plant origin antimicrobial drugs with advanced nano-based methods. Screening of phytochemical components is done using various biochemical methods. UVvisible spectrophotometer is utilized to determine the silver Nanoparticle's size, shape, and its stable nature in the aqueous colloidal solution. FT-IR spectral analysis to identify the bio molecules responsible for the reduction of Ag+ ions. The extracts of Carica papaya leaves were found to be rich in Vitamins, Phenols, Proteolytic enzymes which acts as excellent Antimicrobial agent. Antibacterial activity of crude extracts and silver Nanoparticles synthesized from Carica papaya leaves was evaluated against chosen clinical isolates, which shows the effective zone of inhibition lesser side effects. Though crude extract has shown significant results, silver nanoparticles synthesized using specific key phytochemical component would have the better inhibiting capacity.

2014 ◽  
Vol 2 (3) ◽  
pp. 305-310
Author(s):  
N. Packialakshmi ◽  
S. Naziya

The aim of this study was to synthesis of silver nanoparticles in the aqueous stem extracts of Caralluma fimbriyata and investigate its antibacterial activity. Nanoparticles are being used in many commercial applications. It was found that aqueous silver ions can be reduced by aqueous stem extracts of plant parts to generate to extremely stable silver nanoparticles in water. The chemical groups studied using FT-IR analysis. Green synthesized silver nanoparticles showed zone of inhibition against isolated gram positive and gram negative bacteria. DOI: http://dx.doi.org/10.3126/ijasbt.v2i3.10796Int J Appl Sci Biotechnol, Vol. 2(3): 305-310  


2019 ◽  
Vol 18 (01) ◽  
pp. 1850011 ◽  
Author(s):  
S. Balasubramanian ◽  
U. Jeyapaul ◽  
S. Mary Jelastin Kala

In the present study, bio-meditated silver nanoparticles have been synthesized using Jasminum auriculatum stem extracts. The silver nanoparticles were confirmed using UV-visible and FT-IR spectra. The size and morphology of silver nanoparticles were confirmed using XRD, SEM and EDAX techniques. The antibacterial activity of green synthesized silver nanoparticles was assessed by disc diffusion method against human pathogens. The antibacterial studies indicate that green synthesized silver nanoparticles have several pharmaceutical applications for the management of deadly human pathogens.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 4041
Author(s):  
Adriana Cecilia Csakvari ◽  
Cristian Moisa ◽  
Dana G. Radu ◽  
Leonard M. Olariu ◽  
Andreea I. Lupitu ◽  
...  

Cannabis sativa L. (hemp) is a plant used in the textile industry and green building material industry, as well as for the phytoremediation of soil, medical treatments, and supplementary food products. The synergistic effect of terpenes, flavonoids, and cannabinoids in hemp extracts may mediate the biogenic synthesis of metal nanoparticles. In this study, the chemical composition of aqueous leaf extracts of three varieties of Romanian hemp (two monoecious, and one dioecious) have been determined by Fourier-Transformed Infrared spectroscopy (FT-IR), high-performance liquid chromatography, and mass spectrometry (UHPLC-DAD-MS). Then, their capability to mediate the green synthesis of silver nanoparticles (AgNPs) and their pottential antibacterial applications were evaluated. The average antioxidant capacity of the extracts had 18.4 ± 3.9% inhibition determined by 2,2-diphenyl-1-picrylhydrazyl (DPPH•) and 78.2 ± 4.1% determined by 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS™) assays. The total polyphenolic content of the extracts was 1642 ± 32 mg gallic acid equivalent (GAE) L−1. After this, these extracts were reacted with an aqueous solution of AgNO3 resulting in AgNPs, which were characterized by UV−VIS spectroscopy, FT-IR, scanning electron microscopy (SEM-EDX), and dynamic light scattering (DLS). The results demonstrated obtaining spherical, stable AgNPs with a diameter of less than 69 nm and an absorbance peak at 435 nm. The mixture of extracts and AgNPs showed a superior antioxidant capacity of 2.3 ± 0.4% inhibition determined by the DPPH• assay, 88.5 ± 0.9% inhibition as determined by the ABTS•+ assay, and a good antibacterial activity against several human pathogens: Escherichia coli, Klebsiella pneumoniae, Pseudomonas fluorescens, and Staphylococcus aureus.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Asra Parveen ◽  
Manjunath S. Yalagatti ◽  
Venkataraman Abbaraju ◽  
Raghunandan Deshpande

Antimicrobial study of biofunctionalized silver nanoparticles has been done with the emphasis on its mechanism on both gram positive and negative bacteria. The biofunctionalized silver nanoparticles are employed considering their importance in green chemistry with respect to easy synthesis, usefulness, and economic synthetic procedure involved. The stability of these nanoparticles was determined by zeta potential analyzer. The probable mechanism of antibacterial activity was performed on Proteus mirabilis by field emission scanning electron microscopy (FESEM) and energy dispersive spectroscopy (EDAX) study which does not show the presence of silver. The free radicals generated by silver nanoparticles were responsible for lethal antibacterial activity by rupturing the cell surface which causes improper nutrient and signal supply. Free radical scavenging efficacy of silver nanoparticles was confirmed by 1,1-Diphenyl-2-picrylhydrazyl (DPPH) method. AgNP enhanced the membrane leakage of reducing sugars by destroying the proteins existing on the cell wall. These nanoparticles are found to be toxic against human pathogens and are highly effective on Staphylococcus aureus. The effect of silver nanoparticles is concentration dependent and independent of the type of strains used.


Author(s):  
B. Anandh ◽  
A. Muthuvel ◽  
M. Emayavaramban

The present investigation demonstrates the formation of silver nanoparticles by the reduction of the aqueous silver metal ions during exposure to the Lagenaria siceraria leaf extract. The synthesized AgNPs have characterized by UV-visible spectroscopy, X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR) techniques. AgNPs formation has screened by UV-visible spectroscopy through colour conversion due to surface plasma resonance band at 427 nm. X-ray diffraction (XRD) confirmed that the resulting AgNPs are highly crystalline and the structure is face centered cubic (fcc). FT-IR spectrum indicates the presence of different functional groups present in the biomolecules capping the nanoparticles. Further, inhibitory activity of AgNPs and leaf extract were tested against human pathogens like gram-pastive (Staphylococcus aureus, Bacillus subtilis), gram-negative (Escherichia coli and Pseudomonas aeruginosa). The results indicated that the AgNPs showed moderate inhibitory actions against human pathogens than Lagenaria siceraria leaf extract, demonstrating its antimicrobial value against pathogenic diseases


Author(s):  
Kashan Khan ◽  
Mohd Aamir Qureshi ◽  
Ameer Azam ◽  
Moinuddin ◽  
Javed Musarrat ◽  
...  

Aims: Globally Scientists are working to find more efficient antimicrobial drugs to treat microbial infections and kill drug-resistant bacteria. Background: Despite the availability of numerous antimicrobial drugs bacterial infections still poses a serious threat to global health. Due to a constant decline in the effectiveness of antibiotics owing to their repeated exposure as well as shortlasting antimicrobial activity, led to the demand for developing novel therapeutic agents capable of controlling microbial infections. Objective: In this study, we report antimicrobial activity of chemically synthesized silver nanoparticles (cAgNPs) augmented with ampicillin (amp) in order to increase antimicrobial response against Escherichia coli (gram –ve), Staphylococcus aureus (gram +ve) and Streptococcus mutans (gram +ve). Methods: Nanostructure, colloidal stability, morphology and size of cAgNPs before and after functionalization were explored by UV-vis spectroscopy, FT-IR, zeta potential and TEM. The formation and functionalization of cAgNPs was confirmed from UV-vis spectroscopy and FT-IR patterns. From TEM the average sizes of cAgNPs and cAgNP-amp were found to be 13 and 7.8 nm respectively, and change in colloidal stability after augmentation was confirmed from zeta potential values. The antimicrobial efficacies of cAgNP-amp and cAgNPs against E. coli S. aureus and S. mutans were studied by determining minimum inhibitory concentrations (MICs), zone of inhibition, assessment of viable and non-viable bacterial cells and quantitative assessment of biofilm. Results & Discussion: Our results revealed cAgNP-amp to be highly bactericidal compared to cAgNPs or amp alone. The nano-toxicity studies indicated cAgNP-amp to be less toxic compared to cAgNPs alone. Results: This study manifested that cAgNPs show synergistic antimicrobial effect when they get functionalized with amp suggesting their application in curing long-term bacterial infections.


2020 ◽  
Author(s):  
Giriraj Tailor ◽  
Jyoti Chaudhary ◽  
Ajit Joshi ◽  
Deepshikha Verma ◽  
Osahon Michael

Abstract The bioactive chromium nanoparticles were synthesized by calcination followed by thermal decomposition method. The antibacterial activity of chromium nanoparticles diffused in Dimethyl sulphoxide (DMSO). The antibacterial activity of chromium nanoparticles carried out against significant human pathogens (gram negative bacteria) viz, K. pneumonia, E. coli and P. typhus using agar diffusion cup plate method at 100 µg/ml concentration. The highest zone of inhibition was observed (12.0 mm) against K. pneumonia and lowest zone of inhibition (7.0 mm) E. coli. Thus, the outcomes of these studies suggest that synthesized chromium nanoparticles are of clinical importance.


2013 ◽  
Vol 4 (7) ◽  
pp. 881-888 ◽  
Author(s):  
N. Shanmugam ◽  
P. Rajkamal ◽  
S. Cholan ◽  
N. Kannadasan ◽  
K. Sathishkumar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document